Cargando…

Zearalenone induces apoptosis and autophagy by regulating endoplasmic reticulum stress signalling in porcine trophectoderm cells

Zearalenone (ZEA), a mycotoxin produced mainly by fungi belonging to Fusarium species in foods and feeds, causes a serious hazard to humans and animals. Numerous studies have revealed that ingesting ZEA can disrupt the reproductive function and impair the reproductive process in animals. This experi...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Jun, Li, Jun, Liu, Ning, Jia, Hai, Si, Xuemeng, Zhou, Yusong, Zhai, Zhian, Yang, Ying, Ren, Fazheng, Wu, Zhenlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851881/
https://www.ncbi.nlm.nih.gov/pubmed/36712409
http://dx.doi.org/10.1016/j.aninu.2022.08.016
Descripción
Sumario:Zearalenone (ZEA), a mycotoxin produced mainly by fungi belonging to Fusarium species in foods and feeds, causes a serious hazard to humans and animals. Numerous studies have revealed that ingesting ZEA can disrupt the reproductive function and impair the reproductive process in animals. This experiment was to investigate the toxicological effect and the mechanism of ZEA exposure on reproduction in pigs during early stages of pregnancy. In the present study, we treated with 0 to 80 μmol/L ZEA for 12 or 24 h in trophoblast ectoderm (pTr) cells. The results showed that ZEA had significantly decreased cell proliferation (P < 0.05), which was accompanied by DNA damage-related cell cycle arrest at G2/M phase, activation of the apoptosis and endoplasmic reticulum (ER) stress, as well as impairment of barrier function (P < 0.05). Western blot analysis and transmission electron microscopy (TEM) showed that exposure to ZEA can activation of autophagy in pTr cells. Importantly, pretreatment with chloroquine (CQ) or 3-methyladenine (3-MA) led to increased apoptosis in pTr cells. Interestingly, pTr cells pretreated with 4-phenylbutyric acid (4-PBA), an inhibitor of ER stress, resulted in reduced cell death in pTr cells, indicating a critical role for ER stress in the activation of autophagy. In conclusion, these results reveal that ZEA-triggered ER stress is critical for the cell fate decision of pTr cells during early porcine embryonic development. Application of small molecules with ability of blocking ER stress might be therapeutic option to reduce the deleterious effect of ZEA in pregnant animals.