Cargando…
Predicting clinically significant prostate cancer with a deep learning approach: a multicentre retrospective study
PURPOSE: This study aimed to develop deep learning (DL) models based on multicentre biparametric magnetic resonance imaging (bpMRI) for the diagnosis of clinically significant prostate cancer (csPCa) and compare the performance of these models with that of the Prostate Imaging and Reporting and Data...
Autores principales: | Zhao, Litao, Bao, Jie, Qiao, Xiaomeng, Jin, Pengfei, Ji, Yanting, Li, Zhenkai, Zhang, Ji, Su, Yueting, Ji, Libiao, Shen, Junkang, Zhang, Yueyue, Niu, Lei, Xie, Wanfang, Hu, Chunhong, Shen, Hailin, Wang, Ximing, Liu, Jiangang, Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852176/ https://www.ncbi.nlm.nih.gov/pubmed/36409317 http://dx.doi.org/10.1007/s00259-022-06036-9 |
Ejemplares similares
-
Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: a retrospective multi-center study
por: Jin, Pengfei, et al.
Publicado: (2023) -
Utility of Clinical–Radiomic Model to Identify Clinically Significant Prostate Cancer in Biparametric MRI PI-RADS V2.1 Category 3 Lesions
por: Jin, Pengfei, et al.
Publicado: (2022) -
Value of a combined magnetic resonance imaging-based radiomics-clinical model for predicting extracapsular extension in prostate cancer: a preliminary study
por: Yang, Liqin, et al.
Publicado: (2023) -
A PI-RADS-Based New Nomogram for Predicting Clinically Significant Prostate Cancer: A Cohort Study
por: Zhang, Yueyue, et al.
Publicado: (2020) -
A nomogram based on PI-RADS v2.1 and clinical indicators for predicting clinically significant prostate cancer in the transition zone
por: Wei, Chaogang, et al.
Publicado: (2021)