Cargando…
Deep learning-based system for automatic prediction of triple-negative breast cancer from ultrasound images
To develop a deep-learning system for the automatic identification of triple-negative breast cancer (TNBC) solely from ultrasound images. A total of 145 patients and 831 images were retrospectively enrolled at Peking Union College Hospital from April 2018 to March 2019. Ultrasound images and clinica...
Autores principales: | Boulenger, Alexandre, Luo, Yanwen, Zhang, Chenhui, Zhao, Chenyang, Gao, Yuanjing, Xiao, Mengsu, Zhu, Qingli, Tang, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852203/ https://www.ncbi.nlm.nih.gov/pubmed/36542320 http://dx.doi.org/10.1007/s11517-022-02728-4 |
Ejemplares similares
-
Predicting Axillary Lymph Node Status With a Nomogram Based on Breast Lesion Ultrasound Features: Performance in N1 Breast Cancer Patients
por: Luo, Yanwen, et al.
Publicado: (2020) -
Breast MRI Tumor Automatic Segmentation and Triple-Negative Breast Cancer Discrimination Algorithm Based on Deep Learning
por: Guo, Ying-Ying, et al.
Publicado: (2022) -
Enhancing Performance of Breast Ultrasound in Opportunistic Screening Women by a Deep Learning-Based System: A Multicenter Prospective Study
por: Zhao, Chenyang, et al.
Publicado: (2022) -
Automatic identification of triple negative breast cancer in ultrasonography using a deep convolutional neural network
por: Ye, Heng, et al.
Publicado: (2021) -
Value of high‐frequency ultrasound in the treatment of moderate and severe acne vulgaris
por: Luo, Yanwen, et al.
Publicado: (2022)