Cargando…

Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients

Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integra...

Descripción completa

Detalles Bibliográficos
Autores principales: Chauhan, Pradeep S., Shiang, Alexander, Alahi, Irfan, Sundby, R. Taylor, Feng, Wenjia, Gungoren, Bilge, Nawaf, Cayce, Chen, Kevin, Babbra, Ramandeep K., Harris, Peter K., Qaium, Faridi, Hatscher, Casey, Antiporda, Anna, Brunt, Lindsey, Mayer, Lindsey R., Shern, Jack F., Baumann, Brian C., Kim, Eric H., Reimers, Melissa A., Smith, Zachary L., Chaudhuri, Aadel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852243/
https://www.ncbi.nlm.nih.gov/pubmed/36658307
http://dx.doi.org/10.1038/s41698-022-00345-w
_version_ 1784872573016735744
author Chauhan, Pradeep S.
Shiang, Alexander
Alahi, Irfan
Sundby, R. Taylor
Feng, Wenjia
Gungoren, Bilge
Nawaf, Cayce
Chen, Kevin
Babbra, Ramandeep K.
Harris, Peter K.
Qaium, Faridi
Hatscher, Casey
Antiporda, Anna
Brunt, Lindsey
Mayer, Lindsey R.
Shern, Jack F.
Baumann, Brian C.
Kim, Eric H.
Reimers, Melissa A.
Smith, Zachary L.
Chaudhuri, Aadel A.
author_facet Chauhan, Pradeep S.
Shiang, Alexander
Alahi, Irfan
Sundby, R. Taylor
Feng, Wenjia
Gungoren, Bilge
Nawaf, Cayce
Chen, Kevin
Babbra, Ramandeep K.
Harris, Peter K.
Qaium, Faridi
Hatscher, Casey
Antiporda, Anna
Brunt, Lindsey
Mayer, Lindsey R.
Shern, Jack F.
Baumann, Brian C.
Kim, Eric H.
Reimers, Melissa A.
Smith, Zachary L.
Chaudhuri, Aadel A.
author_sort Chauhan, Pradeep S.
collection PubMed
description Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integrated ultra-low-pass whole genome sequencing (ULP-WGS) with urine cancer personalized profiling by deep sequencing (uCAPP-Seq) to achieve sensitive MRD detection and predict overall survival. Variant allele frequency, inferred tumor mutational burden, and copy number-derived tumor fraction levels in urine cell-free DNA (cfDNA) significantly predicted pathologic complete response status, far better than plasma ctDNA was able to. A random forest model incorporating these urine cfDNA-derived factors with leave-one-out cross-validation was 87% sensitive for predicting residual disease in reference to gold-standard surgical pathology. Both progression-free survival (HR = 3.00, p = 0.01) and overall survival (HR = 4.81, p = 0.009) were dramatically worse by Kaplan–Meier analysis for patients predicted by the model to have MRD, which was corroborated by Cox regression analysis. Additional survival analyses performed on muscle-invasive, neoadjuvant chemotherapy, and held-out validation subgroups corroborated these findings. In summary, we profiled urine samples from 74 patients with localized bladder cancer and used urine cfDNA multi-omics to detect MRD sensitively and predict survival accurately.
format Online
Article
Text
id pubmed-9852243
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98522432023-01-21 Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients Chauhan, Pradeep S. Shiang, Alexander Alahi, Irfan Sundby, R. Taylor Feng, Wenjia Gungoren, Bilge Nawaf, Cayce Chen, Kevin Babbra, Ramandeep K. Harris, Peter K. Qaium, Faridi Hatscher, Casey Antiporda, Anna Brunt, Lindsey Mayer, Lindsey R. Shern, Jack F. Baumann, Brian C. Kim, Eric H. Reimers, Melissa A. Smith, Zachary L. Chaudhuri, Aadel A. NPJ Precis Oncol Brief Communication Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integrated ultra-low-pass whole genome sequencing (ULP-WGS) with urine cancer personalized profiling by deep sequencing (uCAPP-Seq) to achieve sensitive MRD detection and predict overall survival. Variant allele frequency, inferred tumor mutational burden, and copy number-derived tumor fraction levels in urine cell-free DNA (cfDNA) significantly predicted pathologic complete response status, far better than plasma ctDNA was able to. A random forest model incorporating these urine cfDNA-derived factors with leave-one-out cross-validation was 87% sensitive for predicting residual disease in reference to gold-standard surgical pathology. Both progression-free survival (HR = 3.00, p = 0.01) and overall survival (HR = 4.81, p = 0.009) were dramatically worse by Kaplan–Meier analysis for patients predicted by the model to have MRD, which was corroborated by Cox regression analysis. Additional survival analyses performed on muscle-invasive, neoadjuvant chemotherapy, and held-out validation subgroups corroborated these findings. In summary, we profiled urine samples from 74 patients with localized bladder cancer and used urine cfDNA multi-omics to detect MRD sensitively and predict survival accurately. Nature Publishing Group UK 2023-01-19 /pmc/articles/PMC9852243/ /pubmed/36658307 http://dx.doi.org/10.1038/s41698-022-00345-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Brief Communication
Chauhan, Pradeep S.
Shiang, Alexander
Alahi, Irfan
Sundby, R. Taylor
Feng, Wenjia
Gungoren, Bilge
Nawaf, Cayce
Chen, Kevin
Babbra, Ramandeep K.
Harris, Peter K.
Qaium, Faridi
Hatscher, Casey
Antiporda, Anna
Brunt, Lindsey
Mayer, Lindsey R.
Shern, Jack F.
Baumann, Brian C.
Kim, Eric H.
Reimers, Melissa A.
Smith, Zachary L.
Chaudhuri, Aadel A.
Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
title Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
title_full Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
title_fullStr Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
title_full_unstemmed Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
title_short Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
title_sort urine cell-free dna multi-omics to detect mrd and predict survival in bladder cancer patients
topic Brief Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852243/
https://www.ncbi.nlm.nih.gov/pubmed/36658307
http://dx.doi.org/10.1038/s41698-022-00345-w
work_keys_str_mv AT chauhanpradeeps urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT shiangalexander urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT alahiirfan urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT sundbyrtaylor urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT fengwenjia urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT gungorenbilge urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT nawafcayce urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT chenkevin urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT babbraramandeepk urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT harrispeterk urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT qaiumfaridi urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT hatschercasey urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT antipordaanna urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT bruntlindsey urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT mayerlindseyr urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT shernjackf urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT baumannbrianc urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT kimerich urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT reimersmelissaa urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT smithzacharyl urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients
AT chaudhuriaadela urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients