Cargando…
Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integra...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852243/ https://www.ncbi.nlm.nih.gov/pubmed/36658307 http://dx.doi.org/10.1038/s41698-022-00345-w |
_version_ | 1784872573016735744 |
---|---|
author | Chauhan, Pradeep S. Shiang, Alexander Alahi, Irfan Sundby, R. Taylor Feng, Wenjia Gungoren, Bilge Nawaf, Cayce Chen, Kevin Babbra, Ramandeep K. Harris, Peter K. Qaium, Faridi Hatscher, Casey Antiporda, Anna Brunt, Lindsey Mayer, Lindsey R. Shern, Jack F. Baumann, Brian C. Kim, Eric H. Reimers, Melissa A. Smith, Zachary L. Chaudhuri, Aadel A. |
author_facet | Chauhan, Pradeep S. Shiang, Alexander Alahi, Irfan Sundby, R. Taylor Feng, Wenjia Gungoren, Bilge Nawaf, Cayce Chen, Kevin Babbra, Ramandeep K. Harris, Peter K. Qaium, Faridi Hatscher, Casey Antiporda, Anna Brunt, Lindsey Mayer, Lindsey R. Shern, Jack F. Baumann, Brian C. Kim, Eric H. Reimers, Melissa A. Smith, Zachary L. Chaudhuri, Aadel A. |
author_sort | Chauhan, Pradeep S. |
collection | PubMed |
description | Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integrated ultra-low-pass whole genome sequencing (ULP-WGS) with urine cancer personalized profiling by deep sequencing (uCAPP-Seq) to achieve sensitive MRD detection and predict overall survival. Variant allele frequency, inferred tumor mutational burden, and copy number-derived tumor fraction levels in urine cell-free DNA (cfDNA) significantly predicted pathologic complete response status, far better than plasma ctDNA was able to. A random forest model incorporating these urine cfDNA-derived factors with leave-one-out cross-validation was 87% sensitive for predicting residual disease in reference to gold-standard surgical pathology. Both progression-free survival (HR = 3.00, p = 0.01) and overall survival (HR = 4.81, p = 0.009) were dramatically worse by Kaplan–Meier analysis for patients predicted by the model to have MRD, which was corroborated by Cox regression analysis. Additional survival analyses performed on muscle-invasive, neoadjuvant chemotherapy, and held-out validation subgroups corroborated these findings. In summary, we profiled urine samples from 74 patients with localized bladder cancer and used urine cfDNA multi-omics to detect MRD sensitively and predict survival accurately. |
format | Online Article Text |
id | pubmed-9852243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98522432023-01-21 Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients Chauhan, Pradeep S. Shiang, Alexander Alahi, Irfan Sundby, R. Taylor Feng, Wenjia Gungoren, Bilge Nawaf, Cayce Chen, Kevin Babbra, Ramandeep K. Harris, Peter K. Qaium, Faridi Hatscher, Casey Antiporda, Anna Brunt, Lindsey Mayer, Lindsey R. Shern, Jack F. Baumann, Brian C. Kim, Eric H. Reimers, Melissa A. Smith, Zachary L. Chaudhuri, Aadel A. NPJ Precis Oncol Brief Communication Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integrated ultra-low-pass whole genome sequencing (ULP-WGS) with urine cancer personalized profiling by deep sequencing (uCAPP-Seq) to achieve sensitive MRD detection and predict overall survival. Variant allele frequency, inferred tumor mutational burden, and copy number-derived tumor fraction levels in urine cell-free DNA (cfDNA) significantly predicted pathologic complete response status, far better than plasma ctDNA was able to. A random forest model incorporating these urine cfDNA-derived factors with leave-one-out cross-validation was 87% sensitive for predicting residual disease in reference to gold-standard surgical pathology. Both progression-free survival (HR = 3.00, p = 0.01) and overall survival (HR = 4.81, p = 0.009) were dramatically worse by Kaplan–Meier analysis for patients predicted by the model to have MRD, which was corroborated by Cox regression analysis. Additional survival analyses performed on muscle-invasive, neoadjuvant chemotherapy, and held-out validation subgroups corroborated these findings. In summary, we profiled urine samples from 74 patients with localized bladder cancer and used urine cfDNA multi-omics to detect MRD sensitively and predict survival accurately. Nature Publishing Group UK 2023-01-19 /pmc/articles/PMC9852243/ /pubmed/36658307 http://dx.doi.org/10.1038/s41698-022-00345-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Brief Communication Chauhan, Pradeep S. Shiang, Alexander Alahi, Irfan Sundby, R. Taylor Feng, Wenjia Gungoren, Bilge Nawaf, Cayce Chen, Kevin Babbra, Ramandeep K. Harris, Peter K. Qaium, Faridi Hatscher, Casey Antiporda, Anna Brunt, Lindsey Mayer, Lindsey R. Shern, Jack F. Baumann, Brian C. Kim, Eric H. Reimers, Melissa A. Smith, Zachary L. Chaudhuri, Aadel A. Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients |
title | Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients |
title_full | Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients |
title_fullStr | Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients |
title_full_unstemmed | Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients |
title_short | Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients |
title_sort | urine cell-free dna multi-omics to detect mrd and predict survival in bladder cancer patients |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852243/ https://www.ncbi.nlm.nih.gov/pubmed/36658307 http://dx.doi.org/10.1038/s41698-022-00345-w |
work_keys_str_mv | AT chauhanpradeeps urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT shiangalexander urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT alahiirfan urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT sundbyrtaylor urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT fengwenjia urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT gungorenbilge urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT nawafcayce urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT chenkevin urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT babbraramandeepk urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT harrispeterk urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT qaiumfaridi urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT hatschercasey urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT antipordaanna urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT bruntlindsey urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT mayerlindseyr urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT shernjackf urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT baumannbrianc urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT kimerich urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT reimersmelissaa urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT smithzacharyl urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients AT chaudhuriaadela urinecellfreednamultiomicstodetectmrdandpredictsurvivalinbladdercancerpatients |