Cargando…
Allyl isothiocyanate dry powder inhaler based on cyclodextrin-metal organic frameworks for pulmonary delivery
In this study, allyl isothiocyanate (AITC) was prepared as the dry powder inhalation by loading cyclodextrin metal-organic framework (CD-MOF) to enhance pulmonary delivery. β-CD-MOF and γ-CD-MOF both could be used to carry AITC with the optimal loading conditions (50˚C, n(CD): n(AITC) = 1:7, 7 h). C...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852347/ https://www.ncbi.nlm.nih.gov/pubmed/36686390 http://dx.doi.org/10.1016/j.isci.2022.105910 |
Sumario: | In this study, allyl isothiocyanate (AITC) was prepared as the dry powder inhalation by loading cyclodextrin metal-organic framework (CD-MOF) to enhance pulmonary delivery. β-CD-MOF and γ-CD-MOF both could be used to carry AITC with the optimal loading conditions (50˚C, n(CD): n(AITC) = 1:7, 7 h). Compared with β-CD-MOF, γ-CD-MOF had more advantages in AITC loading due to its high drug loading and stable crystal morphology. The particle size and the mass median aerodynamic diameter of γ-CD-MOF-AITC were accorded with the aerodynamic characteristics of lung inhalation. γ-CD-MOF-AITC might be deposited effectively in the deep lung, and the release rate of AITC reached over 90% within 5 min. Meanwhile, it had good pulmonary local tolerance, permeability, and no significant toxicity. Such results indicated that γ-CD-MOF could be used as a dry powder inhaler carrier to deliver safely AITC to lung and increase its pulmonary absorption. |
---|