Cargando…

A generative adversarial network with “zero-shot” learning for positron image denoising

Positron imaging technology has shown good practical value in industrial non-destructive testing, but the noise and artifacts generated during the imaging process of flow field images will directly affect the accuracy of industrial fault diagnosis. Therefore, how to obtain high-quality reconstructed...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Mingwei, Zhao, Min, Yao, Min, Guo, Ruipeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852469/
https://www.ncbi.nlm.nih.gov/pubmed/36658272
http://dx.doi.org/10.1038/s41598-023-28094-1
Descripción
Sumario:Positron imaging technology has shown good practical value in industrial non-destructive testing, but the noise and artifacts generated during the imaging process of flow field images will directly affect the accuracy of industrial fault diagnosis. Therefore, how to obtain high-quality reconstructed images of the positron flow field is a challenging problem. In the existing image denoising methods, the denoising performance of positron images of industrial flow fields in special fields still needs to be strengthened. Considering the characteristics of few sample data and strong regularity of positron flow field image,in this work, we propose a new method for image denoising of positron flow field, which is based on a generative adversarial network with zero-shot learning. This method realizes image denoising under the condition of small sample data, and constrains image generation by constructing the extraction model of image internal features. The experimental results show that the proposed method can reduce the noise while retaining the key information of the image. It has also achieved good performance in the practical application of industrial flow field positron imaging.