Cargando…
A generative adversarial network with “zero-shot” learning for positron image denoising
Positron imaging technology has shown good practical value in industrial non-destructive testing, but the noise and artifacts generated during the imaging process of flow field images will directly affect the accuracy of industrial fault diagnosis. Therefore, how to obtain high-quality reconstructed...
Autores principales: | Zhu, Mingwei, Zhao, Min, Yao, Min, Guo, Ruipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852469/ https://www.ncbi.nlm.nih.gov/pubmed/36658272 http://dx.doi.org/10.1038/s41598-023-28094-1 |
Ejemplares similares
-
Generative Adversarial Network of Industrial Positron Images on Memory Module
por: Zhu, Mingwei, et al.
Publicado: (2022) -
A fast blind zero-shot denoiser
por: Lequyer, Jason, et al.
Publicado: (2022) -
Digital radiography image denoising using a generative adversarial network
por: Sun, Yuewen, et al.
Publicado: (2018) -
An Effective Image Denoising Method for UAV Images via Improved Generative Adversarial Networks
por: Wang, Ruihua, et al.
Publicado: (2018) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021)