Cargando…

Efficient cell death mediated by bioengineered killer extracellular vesicles

Extracellular vesicles (EVs) are biological vehicles that are thought to mediate cell–cell communication via the transfer of biomolecules from donor to acceptor cells. Repurposing those natural vesicles into therapeutics delivery vectors is a high priority challenge for translational science. Here w...

Descripción completa

Detalles Bibliográficos
Autores principales: Dancourt, Julia, Piovesana, Ester, Lavieu, Gregory
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852484/
https://www.ncbi.nlm.nih.gov/pubmed/36658184
http://dx.doi.org/10.1038/s41598-023-28306-8
Descripción
Sumario:Extracellular vesicles (EVs) are biological vehicles that are thought to mediate cell–cell communication via the transfer of biomolecules from donor to acceptor cells. Repurposing those natural vesicles into therapeutics delivery vectors is a high priority challenge for translational science. Here we engineer donor cells to produce copious amount of fusogenic EVs loaded with the catalytic domain of the Diphteria Toxin, known to trigger cell death through protein synthesis inhibition. We show that, when incubated with cancer acceptor cells, these Killer EVs block protein synthesis and lead to cell death. This proof of concept establishes the efficacy of Killer EVs in vitro, and suggests that further development may lead to tumor ablation in vivo, expanding the existing cancer therapeutics arsenal.