Cargando…
Data-driven color augmentation for H&E stained images in computational pathology
Computational pathology targets the automatic analysis of Whole Slide Images (WSI). WSIs are high-resolution digitized histopathology images, stained with chemical reagents to highlight specific tissue structures and scanned via whole slide scanners. The application of different parameters during WS...
Autores principales: | Marini, Niccolò, Otalora, Sebastian, Wodzinski, Marek, Tomassini, Selene, Dragoni, Aldo Franco, Marchand-Maillet, Stephane, Morales, Juan Pedro Dominguez, Duran-Lopez, Lourdes, Vatrano, Simona, Müller, Henning, Atzori, Manfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852546/ https://www.ncbi.nlm.nih.gov/pubmed/36687531 http://dx.doi.org/10.1016/j.jpi.2022.100183 |
Ejemplares similares
-
Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification
por: Otálora, Sebastian, et al.
Publicado: (2021) -
Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology
por: Otálora, Sebastian, et al.
Publicado: (2019) -
Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations
por: Marini, Niccolò, et al.
Publicado: (2022) -
Improving the classification of veterinary thoracic radiographs through inter-species and inter-pathology self-supervised pre-training of deep learning models
por: Celniak, Weronika, et al.
Publicado: (2023) -
Empowering digital pathology applications through explainable knowledge extraction tools
por: Marchesin, Stefano, et al.
Publicado: (2022)