Cargando…
A multimodal imaging-guided software for access to primate brains
BACKGROUND: Imaging-guided access to the brain has become a routine procedure for various research and clinical applications, including drug administration, neurophysiological recording, and sampling tissue. Therefore, open-source software is required to handle such datasets in these specific applic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852658/ https://www.ncbi.nlm.nih.gov/pubmed/36685404 http://dx.doi.org/10.1016/j.heliyon.2022.e12675 |
_version_ | 1784872699375386624 |
---|---|
author | Rezayat, Ehsan Heidari-Gorji, Hamed Narimani, Pouya Shayanfar, Farzad Noroozi, Jalaledin Shahbazi, Ebrahim Ertiaei, Abolhassan Dehaqani, Mohammad-Reza A. |
author_facet | Rezayat, Ehsan Heidari-Gorji, Hamed Narimani, Pouya Shayanfar, Farzad Noroozi, Jalaledin Shahbazi, Ebrahim Ertiaei, Abolhassan Dehaqani, Mohammad-Reza A. |
author_sort | Rezayat, Ehsan |
collection | PubMed |
description | BACKGROUND: Imaging-guided access to the brain has become a routine procedure for various research and clinical applications, including drug administration, neurophysiological recording, and sampling tissue. Therefore, open-source software is required to handle such datasets in these specific applications. NEW METHODS: Here, we proposed an open-source tool utilizing different imaging modalities for automating the steps to access the brain. This tool provides means for easily calculating the coordination of the area of interest concerning a specific point of entry. The source and documentation are available at this link. RESULTS: We have used this software for three different applications: electrophysiological recording, drug infusion in the nonhuman primate brain, and guided biopsy procedure in the human brain. We performed a neural recording of two monkeys' prefrontal cortex and inferior temporal cortex using this software in submillimeter resolution. We also applied our procedure for infusion in the putamen and caudate nuclei in both hemispheres of another group of rhesus monkeys with histological proof in one animal. More so, we validated this software in the human subjects that underwent biopsy surgery with the commercial software used in human biopsy surgery. COMPARISON WITH EXISTING METHODS: Our software uses different imaging modalities by co-registering them. This will provide structural details of the skull and brain tissue. We can calculate each brain region’s coordination at the point of entry by re-slicing the images. Atlas-based image segmentation were implemented in our software. Three mentioned applications of our software in neuroscience will be further discussed in this paper. CONCLUSION: In our procedure, working with different imaging modalities provides a precise estimation of the specific region in the brain related to the location of implants or stereotaxic frames. There is no limitation to using metal implants in this procedure. |
format | Online Article Text |
id | pubmed-9852658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98526582023-01-21 A multimodal imaging-guided software for access to primate brains Rezayat, Ehsan Heidari-Gorji, Hamed Narimani, Pouya Shayanfar, Farzad Noroozi, Jalaledin Shahbazi, Ebrahim Ertiaei, Abolhassan Dehaqani, Mohammad-Reza A. Heliyon Research Article BACKGROUND: Imaging-guided access to the brain has become a routine procedure for various research and clinical applications, including drug administration, neurophysiological recording, and sampling tissue. Therefore, open-source software is required to handle such datasets in these specific applications. NEW METHODS: Here, we proposed an open-source tool utilizing different imaging modalities for automating the steps to access the brain. This tool provides means for easily calculating the coordination of the area of interest concerning a specific point of entry. The source and documentation are available at this link. RESULTS: We have used this software for three different applications: electrophysiological recording, drug infusion in the nonhuman primate brain, and guided biopsy procedure in the human brain. We performed a neural recording of two monkeys' prefrontal cortex and inferior temporal cortex using this software in submillimeter resolution. We also applied our procedure for infusion in the putamen and caudate nuclei in both hemispheres of another group of rhesus monkeys with histological proof in one animal. More so, we validated this software in the human subjects that underwent biopsy surgery with the commercial software used in human biopsy surgery. COMPARISON WITH EXISTING METHODS: Our software uses different imaging modalities by co-registering them. This will provide structural details of the skull and brain tissue. We can calculate each brain region’s coordination at the point of entry by re-slicing the images. Atlas-based image segmentation were implemented in our software. Three mentioned applications of our software in neuroscience will be further discussed in this paper. CONCLUSION: In our procedure, working with different imaging modalities provides a precise estimation of the specific region in the brain related to the location of implants or stereotaxic frames. There is no limitation to using metal implants in this procedure. Elsevier 2023-01-04 /pmc/articles/PMC9852658/ /pubmed/36685404 http://dx.doi.org/10.1016/j.heliyon.2022.e12675 Text en © 2023 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Rezayat, Ehsan Heidari-Gorji, Hamed Narimani, Pouya Shayanfar, Farzad Noroozi, Jalaledin Shahbazi, Ebrahim Ertiaei, Abolhassan Dehaqani, Mohammad-Reza A. A multimodal imaging-guided software for access to primate brains |
title | A multimodal imaging-guided software for access to primate brains |
title_full | A multimodal imaging-guided software for access to primate brains |
title_fullStr | A multimodal imaging-guided software for access to primate brains |
title_full_unstemmed | A multimodal imaging-guided software for access to primate brains |
title_short | A multimodal imaging-guided software for access to primate brains |
title_sort | multimodal imaging-guided software for access to primate brains |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852658/ https://www.ncbi.nlm.nih.gov/pubmed/36685404 http://dx.doi.org/10.1016/j.heliyon.2022.e12675 |
work_keys_str_mv | AT rezayatehsan amultimodalimagingguidedsoftwareforaccesstoprimatebrains AT heidarigorjihamed amultimodalimagingguidedsoftwareforaccesstoprimatebrains AT narimanipouya amultimodalimagingguidedsoftwareforaccesstoprimatebrains AT shayanfarfarzad amultimodalimagingguidedsoftwareforaccesstoprimatebrains AT noroozijalaledin amultimodalimagingguidedsoftwareforaccesstoprimatebrains AT shahbaziebrahim amultimodalimagingguidedsoftwareforaccesstoprimatebrains AT ertiaeiabolhassan amultimodalimagingguidedsoftwareforaccesstoprimatebrains AT dehaqanimohammadrezaa amultimodalimagingguidedsoftwareforaccesstoprimatebrains AT rezayatehsan multimodalimagingguidedsoftwareforaccesstoprimatebrains AT heidarigorjihamed multimodalimagingguidedsoftwareforaccesstoprimatebrains AT narimanipouya multimodalimagingguidedsoftwareforaccesstoprimatebrains AT shayanfarfarzad multimodalimagingguidedsoftwareforaccesstoprimatebrains AT noroozijalaledin multimodalimagingguidedsoftwareforaccesstoprimatebrains AT shahbaziebrahim multimodalimagingguidedsoftwareforaccesstoprimatebrains AT ertiaeiabolhassan multimodalimagingguidedsoftwareforaccesstoprimatebrains AT dehaqanimohammadrezaa multimodalimagingguidedsoftwareforaccesstoprimatebrains |