Cargando…

Deep phenotyping and genomic data from a nationally representative study on dementia in India

The Harmonized Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) is a nationally representative in-depth study of cognitive aging and dementia. We present a publicly available dataset of harmonized cognitive measures of 4,096 adults 60 years of age and older in I...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jinkook, Petrosyan, Sarah, Khobragade, Pranali, Banerjee, Joyita, Chien, Sandy, Weerman, Bas, Gross, Alden, Hu, Peifeng, Smith, Jennifer A., Zhao, Wei, Aksman, Leon, Jain, Urvashi, Shanthi, G. S., Kurup, Ravi, Raman, Aruna, Chakrabarti, Sankha Shubhra, Gambhir, Indrajeet Singh, Varghese, Mathew, John, John P., Joshi, Himanshu, Koul, Parvaiz A., Goswami, Debabrata, Talukdar, Arunansu, Mohanty, Rashmi Ranjan, Yadati, Y. Sathyanarayana Raju, Padmaja, Mekala, Sankhe, Lalit, Rajguru, Chhaya, Gupta, Monica, Kumar, Govind, Dhar, Minakshi, Jovicich, Jorge, Ganna, Andrea, Ganguli, Mary, Chatterjee, Prasun, Singhal, Sunny, Bansal, Rishav, Bajpai, Swati, Desai, Gaurav, Bhatankar, Swaroop, Rao, Abhijith R., Sivakumar, Palanimuthu T., Muliyala, Krishna Prasad, Sinha, Preeti, Loganathan, Santosh, Meijer, Erik, Angrisani, Marco, Kim, Jung Ki, Dey, Sharmistha, Arokiasamy, Perianayagam, Bloom, David E., Toga, Arthur W., Kardia, Sharon L. R., Langa, Kenneth, Crimmins, Eileen M., Dey, Aparajit B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852797/
https://www.ncbi.nlm.nih.gov/pubmed/36670106
http://dx.doi.org/10.1038/s41597-023-01941-6
_version_ 1784872735466323968
author Lee, Jinkook
Petrosyan, Sarah
Khobragade, Pranali
Banerjee, Joyita
Chien, Sandy
Weerman, Bas
Gross, Alden
Hu, Peifeng
Smith, Jennifer A.
Zhao, Wei
Aksman, Leon
Jain, Urvashi
Shanthi, G. S.
Kurup, Ravi
Raman, Aruna
Chakrabarti, Sankha Shubhra
Gambhir, Indrajeet Singh
Varghese, Mathew
John, John P.
Joshi, Himanshu
Koul, Parvaiz A.
Goswami, Debabrata
Talukdar, Arunansu
Mohanty, Rashmi Ranjan
Yadati, Y. Sathyanarayana Raju
Padmaja, Mekala
Sankhe, Lalit
Rajguru, Chhaya
Gupta, Monica
Kumar, Govind
Dhar, Minakshi
Jovicich, Jorge
Ganna, Andrea
Ganguli, Mary
Chatterjee, Prasun
Singhal, Sunny
Bansal, Rishav
Bajpai, Swati
Desai, Gaurav
Bhatankar, Swaroop
Rao, Abhijith R.
Sivakumar, Palanimuthu T.
Muliyala, Krishna Prasad
Sinha, Preeti
Loganathan, Santosh
Meijer, Erik
Angrisani, Marco
Kim, Jung Ki
Dey, Sharmistha
Arokiasamy, Perianayagam
Bloom, David E.
Toga, Arthur W.
Kardia, Sharon L. R.
Langa, Kenneth
Crimmins, Eileen M.
Dey, Aparajit B.
author_facet Lee, Jinkook
Petrosyan, Sarah
Khobragade, Pranali
Banerjee, Joyita
Chien, Sandy
Weerman, Bas
Gross, Alden
Hu, Peifeng
Smith, Jennifer A.
Zhao, Wei
Aksman, Leon
Jain, Urvashi
Shanthi, G. S.
Kurup, Ravi
Raman, Aruna
Chakrabarti, Sankha Shubhra
Gambhir, Indrajeet Singh
Varghese, Mathew
John, John P.
Joshi, Himanshu
Koul, Parvaiz A.
Goswami, Debabrata
Talukdar, Arunansu
Mohanty, Rashmi Ranjan
Yadati, Y. Sathyanarayana Raju
Padmaja, Mekala
Sankhe, Lalit
Rajguru, Chhaya
Gupta, Monica
Kumar, Govind
Dhar, Minakshi
Jovicich, Jorge
Ganna, Andrea
Ganguli, Mary
Chatterjee, Prasun
Singhal, Sunny
Bansal, Rishav
Bajpai, Swati
Desai, Gaurav
Bhatankar, Swaroop
Rao, Abhijith R.
Sivakumar, Palanimuthu T.
Muliyala, Krishna Prasad
Sinha, Preeti
Loganathan, Santosh
Meijer, Erik
Angrisani, Marco
Kim, Jung Ki
Dey, Sharmistha
Arokiasamy, Perianayagam
Bloom, David E.
Toga, Arthur W.
Kardia, Sharon L. R.
Langa, Kenneth
Crimmins, Eileen M.
Dey, Aparajit B.
author_sort Lee, Jinkook
collection PubMed
description The Harmonized Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) is a nationally representative in-depth study of cognitive aging and dementia. We present a publicly available dataset of harmonized cognitive measures of 4,096 adults 60 years of age and older in India, collected across 18 states and union territories. Blood samples were obtained to carry out whole blood and serum-based assays. Results are included in a venous blood specimen datafile that can be linked to the Harmonized LASI-DAD dataset. A global screening array of 960 LASI-DAD respondents is also publicly available for download, in addition to neuroimaging data on 137 LASI-DAD participants. Altogether, these datasets provide comprehensive information on older adults in India that allow researchers to further understand risk factors associated with cognitive impairment and dementia.
format Online
Article
Text
id pubmed-9852797
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98527972023-01-20 Deep phenotyping and genomic data from a nationally representative study on dementia in India Lee, Jinkook Petrosyan, Sarah Khobragade, Pranali Banerjee, Joyita Chien, Sandy Weerman, Bas Gross, Alden Hu, Peifeng Smith, Jennifer A. Zhao, Wei Aksman, Leon Jain, Urvashi Shanthi, G. S. Kurup, Ravi Raman, Aruna Chakrabarti, Sankha Shubhra Gambhir, Indrajeet Singh Varghese, Mathew John, John P. Joshi, Himanshu Koul, Parvaiz A. Goswami, Debabrata Talukdar, Arunansu Mohanty, Rashmi Ranjan Yadati, Y. Sathyanarayana Raju Padmaja, Mekala Sankhe, Lalit Rajguru, Chhaya Gupta, Monica Kumar, Govind Dhar, Minakshi Jovicich, Jorge Ganna, Andrea Ganguli, Mary Chatterjee, Prasun Singhal, Sunny Bansal, Rishav Bajpai, Swati Desai, Gaurav Bhatankar, Swaroop Rao, Abhijith R. Sivakumar, Palanimuthu T. Muliyala, Krishna Prasad Sinha, Preeti Loganathan, Santosh Meijer, Erik Angrisani, Marco Kim, Jung Ki Dey, Sharmistha Arokiasamy, Perianayagam Bloom, David E. Toga, Arthur W. Kardia, Sharon L. R. Langa, Kenneth Crimmins, Eileen M. Dey, Aparajit B. Sci Data Data Descriptor The Harmonized Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) is a nationally representative in-depth study of cognitive aging and dementia. We present a publicly available dataset of harmonized cognitive measures of 4,096 adults 60 years of age and older in India, collected across 18 states and union territories. Blood samples were obtained to carry out whole blood and serum-based assays. Results are included in a venous blood specimen datafile that can be linked to the Harmonized LASI-DAD dataset. A global screening array of 960 LASI-DAD respondents is also publicly available for download, in addition to neuroimaging data on 137 LASI-DAD participants. Altogether, these datasets provide comprehensive information on older adults in India that allow researchers to further understand risk factors associated with cognitive impairment and dementia. Nature Publishing Group UK 2023-01-20 /pmc/articles/PMC9852797/ /pubmed/36670106 http://dx.doi.org/10.1038/s41597-023-01941-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Lee, Jinkook
Petrosyan, Sarah
Khobragade, Pranali
Banerjee, Joyita
Chien, Sandy
Weerman, Bas
Gross, Alden
Hu, Peifeng
Smith, Jennifer A.
Zhao, Wei
Aksman, Leon
Jain, Urvashi
Shanthi, G. S.
Kurup, Ravi
Raman, Aruna
Chakrabarti, Sankha Shubhra
Gambhir, Indrajeet Singh
Varghese, Mathew
John, John P.
Joshi, Himanshu
Koul, Parvaiz A.
Goswami, Debabrata
Talukdar, Arunansu
Mohanty, Rashmi Ranjan
Yadati, Y. Sathyanarayana Raju
Padmaja, Mekala
Sankhe, Lalit
Rajguru, Chhaya
Gupta, Monica
Kumar, Govind
Dhar, Minakshi
Jovicich, Jorge
Ganna, Andrea
Ganguli, Mary
Chatterjee, Prasun
Singhal, Sunny
Bansal, Rishav
Bajpai, Swati
Desai, Gaurav
Bhatankar, Swaroop
Rao, Abhijith R.
Sivakumar, Palanimuthu T.
Muliyala, Krishna Prasad
Sinha, Preeti
Loganathan, Santosh
Meijer, Erik
Angrisani, Marco
Kim, Jung Ki
Dey, Sharmistha
Arokiasamy, Perianayagam
Bloom, David E.
Toga, Arthur W.
Kardia, Sharon L. R.
Langa, Kenneth
Crimmins, Eileen M.
Dey, Aparajit B.
Deep phenotyping and genomic data from a nationally representative study on dementia in India
title Deep phenotyping and genomic data from a nationally representative study on dementia in India
title_full Deep phenotyping and genomic data from a nationally representative study on dementia in India
title_fullStr Deep phenotyping and genomic data from a nationally representative study on dementia in India
title_full_unstemmed Deep phenotyping and genomic data from a nationally representative study on dementia in India
title_short Deep phenotyping and genomic data from a nationally representative study on dementia in India
title_sort deep phenotyping and genomic data from a nationally representative study on dementia in india
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852797/
https://www.ncbi.nlm.nih.gov/pubmed/36670106
http://dx.doi.org/10.1038/s41597-023-01941-6
work_keys_str_mv AT leejinkook deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT petrosyansarah deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT khobragadepranali deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT banerjeejoyita deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT chiensandy deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT weermanbas deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT grossalden deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT hupeifeng deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT smithjennifera deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT zhaowei deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT aksmanleon deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT jainurvashi deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT shanthigs deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT kurupravi deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT ramanaruna deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT chakrabartisankhashubhra deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT gambhirindrajeetsingh deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT varghesemathew deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT johnjohnp deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT joshihimanshu deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT koulparvaiza deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT goswamidebabrata deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT talukdararunansu deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT mohantyrashmiranjan deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT yadatiysathyanarayanaraju deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT padmajamekala deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT sankhelalit deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT rajguruchhaya deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT guptamonica deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT kumargovind deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT dharminakshi deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT jovicichjorge deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT gannaandrea deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT gangulimary deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT chatterjeeprasun deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT singhalsunny deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT bansalrishav deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT bajpaiswati deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT desaigaurav deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT bhatankarswaroop deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT raoabhijithr deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT sivakumarpalanimuthut deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT muliyalakrishnaprasad deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT sinhapreeti deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT loganathansantosh deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT meijererik deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT angrisanimarco deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT kimjungki deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT deysharmistha deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT arokiasamyperianayagam deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT bloomdavide deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT togaarthurw deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT kardiasharonlr deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT langakenneth deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT crimminseileenm deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia
AT deyaparajitb deepphenotypingandgenomicdatafromanationallyrepresentativestudyondementiainindia