Cargando…
Predicting melanoma survival and metastasis with interpretable histopathological features and machine learning models
INTRODUCTION: Melanoma is the fifth most common cancer in US, and the incidence is increasing 1.4% annually. The overall survival rate for early-stage disease is 99.4%. However, melanoma can recur years later (in the same region of the body or as distant metastasis), and results in a dramatically lo...
Autores principales: | Couetil, Justin, Liu, Ziyu, Huang, Kun, Zhang, Jie, Alomari, Ahmed K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853175/ https://www.ncbi.nlm.nih.gov/pubmed/36687402 http://dx.doi.org/10.3389/fmed.2022.1029227 |
Ejemplares similares
-
268 DEGAS: Deep transfer learning reveals cancer-like transcriptional signatures in histologically normal prostate tissue and adjacent-normal tissues in pancreatic cancer
por: Couetil, Justin, et al.
Publicado: (2023) -
Construction and Interpretation of Prediction Model of Teicoplanin Trough Concentration via Machine Learning
por: Ma, Pan, et al.
Publicado: (2022) -
Application of Machine Learning Algorithms to Predict Lymph Node Metastasis in Early Gastric Cancer
por: Tian, HuaKai, et al.
Publicado: (2022) -
Prognosis Prediction of Uveal Melanoma After Plaque Brachytherapy Based on Ultrasound With Machine Learning
por: Luo, Jingting, et al.
Publicado: (2022) -
Predictive models for endoscopic disease activity in patients with ulcerative colitis: Practical machine learning-based modeling and interpretation
por: Li, Xiaojun, et al.
Publicado: (2022)