Cargando…
Machine learning approach to predict postpartum haemorrhage: a systematic review protocol
INTRODUCTION: Postpartum haemorrhage (PPH) is the most serious clinical problem of childbirth that contributes significantly to maternal mortality worldwide. This systematic review aims to identify predictors of PPH based on a machine learning (ML) approach. METHODS AND ANALYSIS: This review adhered...
Autores principales: | Boujarzadeh, Banafsheh, Ranjbar, Amene, Banihashemi, Farzaneh, Mehrnoush, Vahid, Darsareh, Fatemeh, Saffari, Mozhgan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853215/ https://www.ncbi.nlm.nih.gov/pubmed/36657750 http://dx.doi.org/10.1136/bmjopen-2022-067661 |
Ejemplares similares
-
Machine learning models for predicting pre-eclampsia: a systematic review protocol
por: Ranjbar, Amene, et al.
Publicado: (2023) -
Spontaneous bladder rupture and associated factors during pregnancy:a systematic review and metanalysis protocol
por: Ranjbar, Amene, et al.
Publicado: (2022) -
Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
por: Taeidi, Elham, et al.
Publicado: (2023) -
Manifestation of Spontaneous Rupture of the Urinary Bladder in Pregnancy: A Systematic Review of the Literature
por: Ranjbar, Amene, et al.
Publicado: (2023) -
Prediction of postpartum hemorrhage using traditional statistical analysis and a machine learning approach
por: Mehrnoush, Vahid, et al.
Publicado: (2023)