Cargando…
scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference
SUMMARY: The increasing availability of single-cell multi-omics data allows to quantitatively characterize gene regulation. We here describe scMEGA (Single-cell Multiomic Enhancer-based Gene Regulatory Network Inference) that enables an end-to-end analysis of multi-omics data for gene regulatory net...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853317/ https://www.ncbi.nlm.nih.gov/pubmed/36698768 http://dx.doi.org/10.1093/bioadv/vbad003 |
Sumario: | SUMMARY: The increasing availability of single-cell multi-omics data allows to quantitatively characterize gene regulation. We here describe scMEGA (Single-cell Multiomic Enhancer-based Gene Regulatory Network Inference) that enables an end-to-end analysis of multi-omics data for gene regulatory network inference including modalities integration, trajectory analysis, enhancer-to-promoter association, network analysis and visualization. This enables to study the complex gene regulation mechanisms for dynamic biological processes, such as cellular differentiation and disease-driven cellular remodeling. We provide a case study on gene regulatory networks controlling myofibroblast activation in human myocardial infarction. AVAILABILITY AND IMPLEMENTATION: scMEGA is implemented in R, released under the MIT license and available from https://github.com/CostaLab/scMEGA. Tutorials are available from https://costalab.github.io/scMEGA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. |
---|