Cargando…

Radially and Azimuthally Pure Vortex Beams from Phase-Amplitude Metasurfaces

[Image: see text] To exploit the full potential of the transverse spatial structure of light using the Laguerre–Gaussian basis, it is necessary to control the azimuthal and radial components of the photons. Vortex phase elements are commonly used to generate these modes of light, offering precise co...

Descripción completa

Detalles Bibliográficos
Autores principales: de Oliveira, Michael, Piccardo, Marco, Eslami, Sahand, Aglieri, Vincenzo, Toma, Andrea, Ambrosio, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853941/
https://www.ncbi.nlm.nih.gov/pubmed/36691429
http://dx.doi.org/10.1021/acsphotonics.2c01697
Descripción
Sumario:[Image: see text] To exploit the full potential of the transverse spatial structure of light using the Laguerre–Gaussian basis, it is necessary to control the azimuthal and radial components of the photons. Vortex phase elements are commonly used to generate these modes of light, offering precise control over the azimuthal index but neglecting the radially dependent amplitude term, which defines their associated corresponding transverse profile. Here, we experimentally demonstrate the generation of high-purity Laguerre–Gaussian beams with a single-step on-axis transformation implemented with a dielectric phase-amplitude metasurface. By vectorially structuring the input beam and projecting it onto an orthogonal polarization basis, we can sculpt any vortex beam in phase and amplitude. We characterize the azimuthal and radial purities of the generated vortex beams, reaching a purity of 98% for a vortex beam with l =50 and p = 0. Furthermore, we comparatively show that the purity of the generated vortex beams outperforms those generated with other well-established phase-only metasurface approaches. In addition, we highlight the formation of “ghost” orbital angular momentum orders from azimuthal gratings (analogous to ghost orders in ruled gratings), which have not been widely studied to date. Our work brings higher-order vortex beams and their unlimited potential within reach of wide adoption.