Cargando…
Recognizing pathology of renal tumor from macroscopic cross-section image by deep learning
OBJECTIVES: This study aims to develop and evaluate the deep learning-based classification model for recognizing the pathology of renal tumor from macroscopic cross-section image. METHODS: A total of 467 pathology-confirmed patients who received radical nephrectomy or partial nephrectomy were retros...
Autores principales: | Lin, Zefang, Yang, Weihong, Zhang, Wenqiang, Jiang, Chao, Chu, Jing, Yang, Jing, Yuan, Xiaoxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854121/ https://www.ncbi.nlm.nih.gov/pubmed/36670469 http://dx.doi.org/10.1186/s12938-023-01064-4 |
Ejemplares similares
-
Deep learning in macroscopic diffuse optical imaging
por: Smith, Jason T., et al.
Publicado: (2022) -
Deep Learning-Based Universal Expert-Level Recognizing Pathological Images of Hepatocellular Carcinoma and Beyond
por: Chen, Wei-Ming, et al.
Publicado: (2022) -
A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
por: Zhang, Fan, et al.
Publicado: (2020) -
DRER: Deep Learning–Based Driver’s Real Emotion Recognizer
por: Oh, Geesung, et al.
Publicado: (2021) -
The Food Recognition Benchmark: Using Deep Learning to Recognize Food in Images
por: Mohanty, Sharada Prasanna, et al.
Publicado: (2022)