Cargando…
Collinearity and Dimensionality Reduction in Radiomics: Effect of Preprocessing Parameters in Hypertrophic Cardiomyopathy Magnetic Resonance T1 and T2 Mapping
Radiomics and artificial intelligence have the potential to become a valuable tool in clinical applications. Frequently, radiomic analyses through machine learning methods present issues caused by high dimensionality and multicollinearity, and redundant radiomic features are usually removed based on...
Autores principales: | Marzi, Chiara, Marfisi, Daniela, Barucci, Andrea, Del Meglio, Jacopo, Lilli, Alessio, Vignali, Claudio, Mascalchi, Mario, Casolo, Giancarlo, Diciotti, Stefano, Traino, Antonio Claudio, Tessa, Carlo, Giannelli, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854492/ https://www.ncbi.nlm.nih.gov/pubmed/36671652 http://dx.doi.org/10.3390/bioengineering10010080 |
Ejemplares similares
-
Image resampling and discretization effect on the estimate of myocardial radiomic features from T1 and T2 mapping in hypertrophic cardiomyopathy
por: Marfisi, Daniela, et al.
Publicado: (2022) -
Radiomics of Patients with Locally Advanced Rectal Cancer: Effect of Preprocessing on Features Estimation from Computed Tomography Imaging
por: Linsalata, Stefania, et al.
Publicado: (2022) -
Toward a more reliable characterization of fractal properties of the cerebral cortex of healthy subjects during the lifespan
por: Marzi, Chiara, et al.
Publicado: (2020) -
MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast
por: Giannelli, Marco, et al.
Publicado: (2014) -
Characterization of Nyquist ghost in EPI‐fMRI acquisition sequences implemented on two clinical 1.5 T MR scanner systems: effect of readout bandwidth and echo spacing
por: Giannelli, Marco, et al.
Publicado: (2010)