Cargando…
Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways
Neuroinflammation is one of the critical causes of neuronal loss and cognitive impairment. We aimed to evaluate the anti-neuroinflammatory properties of Ishige okamuae using mice intracerebroventricularly injected with lipopolysaccharides (LPS) and LPS-treated C6 glioma cells. We found that the shor...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854571/ https://www.ncbi.nlm.nih.gov/pubmed/36670940 http://dx.doi.org/10.3390/antiox12010078 |
_version_ | 1784873153800962048 |
---|---|
author | Kwon, Oh-Yun Lee, Seung-Ho |
author_facet | Kwon, Oh-Yun Lee, Seung-Ho |
author_sort | Kwon, Oh-Yun |
collection | PubMed |
description | Neuroinflammation is one of the critical causes of neuronal loss and cognitive impairment. We aimed to evaluate the anti-neuroinflammatory properties of Ishige okamuae using mice intracerebroventricularly injected with lipopolysaccharides (LPS) and LPS-treated C6 glioma cells. We found that the short- and long-term memory deficits of LPS-injected mice were improved by oral administration of Ishige okamurae extracts (IOE). LPS-induced neuronal loss, increase in amyloid-β plaque, and expression of COX-2 and iNOS were restored by IOE. In addition, LPS-induced activation of Toll-like receptor-4 (TLR-4) and its downstream molecules, such as MyD88, NFκB, and mitogen-activated protein kinases (MAPKs), were significantly attenuated in the brains of mice fed with IOE. We found that pretreatment of IOE to C6 glioma cells ameliorated LPS-induced expression of TLR-4 and its inflammatory cascades, such as MyD88 expression, reactive oxygen species production, MAPKs phosphorylation, and NFκB phosphorylation with consequent downregulation of COX-2, iNOS, proinflammatory cytokines, and nitric oxide expression. Furthermore, IOE (0.2 µg/mL) was found to have equivalent efficacy with 10 μM of MyD88 inhibitor in preventing LPS-induced inflammatory responses in C6 glioma cells. Taken together, these results strongly suggest that IOE could be developed as a promising anti-neuroinflammatory agent which is able to control the TLR-4/MyD88-dependent signaling pathways. |
format | Online Article Text |
id | pubmed-9854571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98545712023-01-21 Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways Kwon, Oh-Yun Lee, Seung-Ho Antioxidants (Basel) Article Neuroinflammation is one of the critical causes of neuronal loss and cognitive impairment. We aimed to evaluate the anti-neuroinflammatory properties of Ishige okamuae using mice intracerebroventricularly injected with lipopolysaccharides (LPS) and LPS-treated C6 glioma cells. We found that the short- and long-term memory deficits of LPS-injected mice were improved by oral administration of Ishige okamurae extracts (IOE). LPS-induced neuronal loss, increase in amyloid-β plaque, and expression of COX-2 and iNOS were restored by IOE. In addition, LPS-induced activation of Toll-like receptor-4 (TLR-4) and its downstream molecules, such as MyD88, NFκB, and mitogen-activated protein kinases (MAPKs), were significantly attenuated in the brains of mice fed with IOE. We found that pretreatment of IOE to C6 glioma cells ameliorated LPS-induced expression of TLR-4 and its inflammatory cascades, such as MyD88 expression, reactive oxygen species production, MAPKs phosphorylation, and NFκB phosphorylation with consequent downregulation of COX-2, iNOS, proinflammatory cytokines, and nitric oxide expression. Furthermore, IOE (0.2 µg/mL) was found to have equivalent efficacy with 10 μM of MyD88 inhibitor in preventing LPS-induced inflammatory responses in C6 glioma cells. Taken together, these results strongly suggest that IOE could be developed as a promising anti-neuroinflammatory agent which is able to control the TLR-4/MyD88-dependent signaling pathways. MDPI 2022-12-29 /pmc/articles/PMC9854571/ /pubmed/36670940 http://dx.doi.org/10.3390/antiox12010078 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kwon, Oh-Yun Lee, Seung-Ho Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways |
title | Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways |
title_full | Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways |
title_fullStr | Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways |
title_full_unstemmed | Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways |
title_short | Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways |
title_sort | ishige okamurae attenuates neuroinflammation and cognitive deficits in mice intracerebroventricularly injected with lps via regulating tlr-4/myd88-dependent pathways |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854571/ https://www.ncbi.nlm.nih.gov/pubmed/36670940 http://dx.doi.org/10.3390/antiox12010078 |
work_keys_str_mv | AT kwonohyun ishigeokamuraeattenuatesneuroinflammationandcognitivedeficitsinmiceintracerebroventricularlyinjectedwithlpsviaregulatingtlr4myd88dependentpathways AT leeseungho ishigeokamuraeattenuatesneuroinflammationandcognitivedeficitsinmiceintracerebroventricularlyinjectedwithlpsviaregulatingtlr4myd88dependentpathways |