Cargando…
De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates
When sparsely sampled data are used to accelerate magnetic resonance imaging (MRI), conventional reconstruction approaches produce significant artifacts that obscure the content of the image. To remove aliasing artifacts, we propose an advanced convolutional neural network (CNN) called fully dense a...
Autores principales: | Hossain, Md. Biddut, Kwon, Ki-Chul, Imtiaz, Shariar Md, Nam, Oh-Seung, Jeon, Seok-Hee, Kim, Nam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854709/ https://www.ncbi.nlm.nih.gov/pubmed/36671594 http://dx.doi.org/10.3390/bioengineering10010022 |
Ejemplares similares
-
Depth Estimation for Integral Imaging Microscopy Using a 3D–2D CNN with a Weighted Median Filter
por: Imtiaz, Shariar Md, et al.
Publicado: (2022) -
A Hybrid Residual Attention Convolutional Neural Network for Compressed Sensing Magnetic Resonance Image Reconstruction
por: Hossain, Md. Biddut, et al.
Publicado: (2023) -
Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning
por: Shinde, Rupali Kiran, et al.
Publicado: (2022) -
Attention-Based Fully Gated CNN-BGRU for Russian Handwritten Text
por: Abdallah, Abdelrahman, et al.
Publicado: (2020) -
Trajectory-Based Air-Writing Recognition Using Deep Neural Network and Depth Sensor
por: Alam, Md. Shahinur, et al.
Publicado: (2020)