Cargando…
A Novel Baseline Removal Paradigm for Subject-Independent Features in Emotion Classification Using EEG
Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signa...
Autores principales: | Ahmed, Md. Zaved Iqubal, Sinha, Nidul, Ghaderpour, Ebrahim, Phadikar, Souvik, Ghosh, Rajdeep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854727/ https://www.ncbi.nlm.nih.gov/pubmed/36671626 http://dx.doi.org/10.3390/bioengineering10010054 |
Ejemplares similares
-
Automated Feature Extraction on AsMap for Emotion Classification Using EEG
por: Ahmed, Md. Zaved Iqubal, et al.
Publicado: (2022) -
Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter
por: Phadikar, Souvik, et al.
Publicado: (2022) -
SAM 40: Dataset of 40 subject EEG recordings to monitor the induced-stress while performing Stroop color-word test, arithmetic task, and mirror image recognition task
por: Ghosh, Rajdeep, et al.
Publicado: (2022) -
Subject-Independent EEG Emotion Recognition Based on Genetically Optimized Projection Dictionary Pair Learning
por: Su, Jipu, et al.
Publicado: (2023) -
Instructions matter: a comparison of baseline conditions for cognitive emotion regulation paradigms
por: Diers, Kersten, et al.
Publicado: (2014)