Cargando…
National Surveillance of Tetracycline, Erythromycin, and Clindamycin Resistance in Invasive Streptococcus pyogenes: A Retrospective Study of the Situation in Spain, 2007–2020
Background: This work reports on antimicrobial resistance data for invasive Streptococcus pyogenes in Spain, collected by the ‘Surveillance Program for Invasive Group A Streptococcus’, in 2007–2020. Methods: emm typing was determined by sequencing. Susceptibility to penicillin, tetracycline, erythro...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854882/ https://www.ncbi.nlm.nih.gov/pubmed/36671301 http://dx.doi.org/10.3390/antibiotics12010099 |
Sumario: | Background: This work reports on antimicrobial resistance data for invasive Streptococcus pyogenes in Spain, collected by the ‘Surveillance Program for Invasive Group A Streptococcus’, in 2007–2020. Methods: emm typing was determined by sequencing. Susceptibility to penicillin, tetracycline, erythromycin, and clindamycin was determined via the E-test. tetM, tetO, msrD, mefA, ermB, ermTR, and ermT were sought by PCR. Macrolide-resistant phenotypes (M, cMLSB, and iMLSB) were detected using the erythromycin–clindamycin double-disk test. Resistant clones were identified via their emm type, multilocus sequence type (ST), resistance genotype, and macrolide resistance phenotype. Results: Penicillin susceptibility was universal. Tetracycline resistance was recorded for 237/1983 isolates (12.0%) (152 carried only tetM, 48 carried only tetO, and 33 carried both). Erythromycin resistance was detected in 172/1983 isolates (8.7%); ermB was present in 83, mefA in 58, msrD in 51, ermTR in 46, and ermT in 36. Clindamycin resistance (methylase-mediated) was present in 78/1983 isolates (3.9%). Eight main resistant clones were identified: two that were tetracycline-resistant only (emm22/ST46/tetM and emm77/ST63/tetO), three that were erythromycin-resistant only (emm4/ST39/mefA-msrD/M, emm12/ST36/mefA-msrD/M, and emm28/ST52/ermB/cMLSB), and three that were tetracycline–erythromycin co-resistant (emm11/ST403/tetM-ermB/cMLSB, emm77/ST63/tetO-ermTR/iMLSB, and emm77/ST63/tetM-tetO-ermTR/iMLSB). Conclusions: Tetracycline, erythromycin, and clindamycin resistance rates declined between 2007 and 2020. Temporal variations in the proportion of resistant clones determined the change in resistance rates. |
---|