Cargando…

NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury

Oxidative stress, inflammation and germ cell death are the main characteristics of testicular ischemia reperfusion injury (tIRI), which is considered as the underlying mechanism for testicular torsion and detorsion. The study aimed to examine the effect of tIRI-activated NADPH oxidase (NOX) on the e...

Descripción completa

Detalles Bibliográficos
Autores principales: Almarzouq, Duaah, Al-Maghrebi, May
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855003/
https://www.ncbi.nlm.nih.gov/pubmed/36671008
http://dx.doi.org/10.3390/antiox12010145
_version_ 1784873269888811008
author Almarzouq, Duaah
Al-Maghrebi, May
author_facet Almarzouq, Duaah
Al-Maghrebi, May
author_sort Almarzouq, Duaah
collection PubMed
description Oxidative stress, inflammation and germ cell death are the main characteristics of testicular ischemia reperfusion injury (tIRI), which is considered as the underlying mechanism for testicular torsion and detorsion. The study aimed to examine the effect of tIRI-activated NADPH oxidase (NOX) on the expression of the NLRP3 inflammasome pathway components. Three groups of male Sprague–Dawley rats (n = 12 each) were studied: sham, unilateral tIRI only and tIRI treated with apocynin, a NOX-specific inhibitor. The tIRI rat model was subjected to 1 h of ischemia followed by 4 h of reperfusion. H&E staining, real time PCR, biochemical assays, and Western blot were utilized to evaluate spermatogenic damage, gene expression, oxidative stress markers, and NLRP3 pathway components, respectively. As a result of tIRI, decreased total antioxidant capacity and suppressed activities of superoxide dismutase and catalase were associated with spermatogenic arrest. The components of the NLRP3 inflammasome pathway (TXNIP, NLRP3, ASC, caspase-1, GSDMD, MMP-9) were upregulated transcriptionally and post-transcriptionally during tIRI. In parallel, tissue inflammation was demonstrated by a marked increase in the concentrations of myeloperoxidase, IL-1β, and IL-18. Apocynin treatment prevented testicular oxidative stress and inflammation. Thus, NOX inhibition by apocynin prevented ROS accumulation, proinflammatory cytokine overexpression and NLRP3 inflammasome activation during tIRI.
format Online
Article
Text
id pubmed-9855003
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98550032023-01-21 NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury Almarzouq, Duaah Al-Maghrebi, May Antioxidants (Basel) Article Oxidative stress, inflammation and germ cell death are the main characteristics of testicular ischemia reperfusion injury (tIRI), which is considered as the underlying mechanism for testicular torsion and detorsion. The study aimed to examine the effect of tIRI-activated NADPH oxidase (NOX) on the expression of the NLRP3 inflammasome pathway components. Three groups of male Sprague–Dawley rats (n = 12 each) were studied: sham, unilateral tIRI only and tIRI treated with apocynin, a NOX-specific inhibitor. The tIRI rat model was subjected to 1 h of ischemia followed by 4 h of reperfusion. H&E staining, real time PCR, biochemical assays, and Western blot were utilized to evaluate spermatogenic damage, gene expression, oxidative stress markers, and NLRP3 pathway components, respectively. As a result of tIRI, decreased total antioxidant capacity and suppressed activities of superoxide dismutase and catalase were associated with spermatogenic arrest. The components of the NLRP3 inflammasome pathway (TXNIP, NLRP3, ASC, caspase-1, GSDMD, MMP-9) were upregulated transcriptionally and post-transcriptionally during tIRI. In parallel, tissue inflammation was demonstrated by a marked increase in the concentrations of myeloperoxidase, IL-1β, and IL-18. Apocynin treatment prevented testicular oxidative stress and inflammation. Thus, NOX inhibition by apocynin prevented ROS accumulation, proinflammatory cytokine overexpression and NLRP3 inflammasome activation during tIRI. MDPI 2023-01-07 /pmc/articles/PMC9855003/ /pubmed/36671008 http://dx.doi.org/10.3390/antiox12010145 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Almarzouq, Duaah
Al-Maghrebi, May
NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury
title NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury
title_full NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury
title_fullStr NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury
title_full_unstemmed NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury
title_short NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury
title_sort nadph oxidase-mediated testicular oxidative imbalance regulates the txnip/nlrp3 inflammasome axis activation after ischemia reperfusion injury
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855003/
https://www.ncbi.nlm.nih.gov/pubmed/36671008
http://dx.doi.org/10.3390/antiox12010145
work_keys_str_mv AT almarzouqduaah nadphoxidasemediatedtesticularoxidativeimbalanceregulatesthetxnipnlrp3inflammasomeaxisactivationafterischemiareperfusioninjury
AT almaghrebimay nadphoxidasemediatedtesticularoxidativeimbalanceregulatesthetxnipnlrp3inflammasomeaxisactivationafterischemiareperfusioninjury