Cargando…
MFIDMA: A Multiple Information Integration Model for the Prediction of Drug–miRNA Associations
SIMPLE SUMMARY: Predicting the possible associations between drugs and miRNAs would provide new perspectives on miRNA therapeutics research and drug discovery. However, considering the time investment and expensive cost of wet experiments, there is an urgent need for a computational approach that wo...
Autores principales: | Guan, Yong-Jian, Yu, Chang-Qing, Qiao, Yan, Li, Li-Ping, You, Zhu-Hong, Ren, Zhong-Hao, Li, Yue-Chao, Pan, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855084/ https://www.ncbi.nlm.nih.gov/pubmed/36671734 http://dx.doi.org/10.3390/biology12010041 |
Ejemplares similares
-
SGCNCMI: A New Model Combining Multi-Modal Information to Predict circRNA-Related miRNAs, Diseases and Genes
por: Yu, Chang-Qing, et al.
Publicado: (2022) -
KGDCMI: A New Approach for Predicting circRNA–miRNA Interactions From Multi-Source Information Extraction and Deep Learning
por: Wang, Xin-Fei, et al.
Publicado: (2022) -
SAWRPI: A Stacking Ensemble Framework With Adaptive Weight for Predicting ncRNA-Protein Interactions Using Sequence Information
por: Ren, Zhong-Hao, et al.
Publicado: (2022) -
BNEMDI: A Novel MicroRNA–Drug Interaction Prediction Model Based on Multi-Source Information With a Large-Scale Biological Network
por: Guan, Yong-Jian, et al.
Publicado: (2022) -
A network embedding-based multiple information integration method for the MiRNA-disease association prediction
por: Gong, Yuchong, et al.
Publicado: (2019)