Cargando…

An insight to the internal quality control of blood components separated using the latest whole blood collection and processing systems: Experience from a tertiary care hospital blood transfusion service in Eastern India

BACKGROUND: With blood component therapy becoming the standard of care in transfusion medicine globally, the quality control (QC) of these components has become a routine and mandatory program in all blood centers. Extensive utilization of blood components has been observed in our multidisciplinary...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Sudipta Sekhar, Biswas, Rathindra Nath, Sardar, Tirtha Pratim, Safi, Mahammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855214/
https://www.ncbi.nlm.nih.gov/pubmed/36687542
http://dx.doi.org/10.4103/ajts.ajts_52_21
Descripción
Sumario:BACKGROUND: With blood component therapy becoming the standard of care in transfusion medicine globally, the quality control (QC) of these components has become a routine and mandatory program in all blood centers. Extensive utilization of blood components has been observed in our multidisciplinary tertiary care hospital. We use quadruple bag systems and automated component extraction facilities for collection and processing of whole blood (WB). In this study, we analyzed our data relating to QC of all blood components which we prepare and issue for transfusion. MATERIALS AND METHODS: The retrospective 5-year study comprised 47,430 WB collections which were separated into blood components using quadruple bags and automated component extraction machine. A total of 90 units of WB were processed into blood components for the machine calibration and validation. Routine use of the system was started once the calibration and validation results were acceptable. At least 1% of each component prepared was subjected to QC as per departmental standard operating procedures. Statistical analysis was done using the SPSS statistical package. RESULTS: The mean volume, hematocrit (Hct), platelet (PLT), and white blood cell (WBC) in 350 and 450 mL WB units were 394.63 mL, 39.43%, 0.93 × 10(11), and 3.12 × 10(9) and 507.75 mL, 40.72%, 1.13 × 10(11), and 3.45 × 10(9), respectively, with mean recovery of PLT and WBC in buffy coat being 95.54% and 68.63% and 97.87% and 74.51%, respectively. As high as 89.91% RBC recovery was noted in the packed red blood cell units which were subjected to QC. QC of random donor platelets was performed in 979 (2.36%) units with acceptable results. The mean fibrinogen and FVIII values were estimated to be 469.17 mg and 217.34 IU (1.07 IU/mL) and 600.21 mg and 273.39 IU (1.11 IU/mL) in fresh frozen plasma units prepared from 350 and 450 mL WB, respectively. A total of 578 (1.62%) units of cryoprecipitate were investigated for QC with favorable results. CONCLUSION: We conclude that QC data generated in this study will provide invaluable information about the performance of the latest blood collection systems. QC of all blood components under study complied with both national and international standards. We opine that all blood centers should establish a complete QC program and adhere to departmental protocols and manufacturer's instructions for its execution and effective outcome.