Cargando…

Strain Sensor-Inserted Microchannel for Gas Viscosity Measurement

Quantifying the viscosity of a gas is of great importance in determining its properties and can even be used to identify what the gas is. While many techniques exist for measuring the viscosities of gases, it is still challenging to probe gases with a simple, robust setup that will be useful for pra...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiba, Kota, Liu, Linbo, Li, Guangming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855327/
https://www.ncbi.nlm.nih.gov/pubmed/36671911
http://dx.doi.org/10.3390/bios13010076
Descripción
Sumario:Quantifying the viscosity of a gas is of great importance in determining its properties and can even be used to identify what the gas is. While many techniques exist for measuring the viscosities of gases, it is still challenging to probe gases with a simple, robust setup that will be useful for practical applications. We introduce a facile approach to estimating gas viscosity using a strain gauge inserted in a straight microchannel with a height smaller than that of the gauge. Using a constrained geometry for the strain gauge, in which part of the gauge deforms the channel to generate initial gauge strain that can be transduced into pressure, the pressure change induced via fluid flow was measured. The change was found to linearly correlate with fluid viscosity, allowing estimation of the viscosities of gases with a simple device.