Cargando…
Mapping DNA Conformations Using Single-Molecule Conductance Measurements
DNA is an attractive material for a range of applications in nanoscience and nanotechnology, and it has recently been demonstrated that the electronic properties of DNA are uniquely sensitive to its sequence and structure, opening new opportunities for the development of electronic DNA biosensors. I...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855376/ https://www.ncbi.nlm.nih.gov/pubmed/36671514 http://dx.doi.org/10.3390/biom13010129 |
_version_ | 1784873364993605632 |
---|---|
author | Alangari, Mashari Demir, Busra Gultakti, Caglanaz Akin Oren, Ersin Emre Hihath, Joshua |
author_facet | Alangari, Mashari Demir, Busra Gultakti, Caglanaz Akin Oren, Ersin Emre Hihath, Joshua |
author_sort | Alangari, Mashari |
collection | PubMed |
description | DNA is an attractive material for a range of applications in nanoscience and nanotechnology, and it has recently been demonstrated that the electronic properties of DNA are uniquely sensitive to its sequence and structure, opening new opportunities for the development of electronic DNA biosensors. In this report, we examine the origin of multiple conductance peaks that can occur during single-molecule break-junction (SMBJ)-based conductance measurements on DNA. We demonstrate that these peaks originate from the presence of multiple DNA conformations within the solutions, in particular, double-stranded B-form DNA (dsDNA) and G-quadruplex structures. Using a combination of circular dichroism (CD) spectroscopy, computational approaches, sequence and environmental controls, and single-molecule conductance measurements, we disentangle the conductance information and demonstrate that specific conductance values come from specific conformations of the DNA and that the occurrence of these peaks can be controlled by controlling the local environment. In addition, we demonstrate that conductance measurements are uniquely sensitive to identifying these conformations in solutions and that multiple configurations can be detected in solutions over an extremely large concentration range, opening new possibilities for examining low-probability DNA conformations in solutions. |
format | Online Article Text |
id | pubmed-9855376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98553762023-01-21 Mapping DNA Conformations Using Single-Molecule Conductance Measurements Alangari, Mashari Demir, Busra Gultakti, Caglanaz Akin Oren, Ersin Emre Hihath, Joshua Biomolecules Article DNA is an attractive material for a range of applications in nanoscience and nanotechnology, and it has recently been demonstrated that the electronic properties of DNA are uniquely sensitive to its sequence and structure, opening new opportunities for the development of electronic DNA biosensors. In this report, we examine the origin of multiple conductance peaks that can occur during single-molecule break-junction (SMBJ)-based conductance measurements on DNA. We demonstrate that these peaks originate from the presence of multiple DNA conformations within the solutions, in particular, double-stranded B-form DNA (dsDNA) and G-quadruplex structures. Using a combination of circular dichroism (CD) spectroscopy, computational approaches, sequence and environmental controls, and single-molecule conductance measurements, we disentangle the conductance information and demonstrate that specific conductance values come from specific conformations of the DNA and that the occurrence of these peaks can be controlled by controlling the local environment. In addition, we demonstrate that conductance measurements are uniquely sensitive to identifying these conformations in solutions and that multiple configurations can be detected in solutions over an extremely large concentration range, opening new possibilities for examining low-probability DNA conformations in solutions. MDPI 2023-01-08 /pmc/articles/PMC9855376/ /pubmed/36671514 http://dx.doi.org/10.3390/biom13010129 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alangari, Mashari Demir, Busra Gultakti, Caglanaz Akin Oren, Ersin Emre Hihath, Joshua Mapping DNA Conformations Using Single-Molecule Conductance Measurements |
title | Mapping DNA Conformations Using Single-Molecule Conductance Measurements |
title_full | Mapping DNA Conformations Using Single-Molecule Conductance Measurements |
title_fullStr | Mapping DNA Conformations Using Single-Molecule Conductance Measurements |
title_full_unstemmed | Mapping DNA Conformations Using Single-Molecule Conductance Measurements |
title_short | Mapping DNA Conformations Using Single-Molecule Conductance Measurements |
title_sort | mapping dna conformations using single-molecule conductance measurements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855376/ https://www.ncbi.nlm.nih.gov/pubmed/36671514 http://dx.doi.org/10.3390/biom13010129 |
work_keys_str_mv | AT alangarimashari mappingdnaconformationsusingsinglemoleculeconductancemeasurements AT demirbusra mappingdnaconformationsusingsinglemoleculeconductancemeasurements AT gultakticaglanazakin mappingdnaconformationsusingsinglemoleculeconductancemeasurements AT orenersinemre mappingdnaconformationsusingsinglemoleculeconductancemeasurements AT hihathjoshua mappingdnaconformationsusingsinglemoleculeconductancemeasurements |