Cargando…
Multiomics Approach Captures Hepatic Metabolic Network Altered by Chronic Ethanol Administration
SIMPLE SUMMARY: The liver sustains the greatest damage from heavy alcohol consumption because alcohol is primarily detoxified in the liver. Accumulation of fat in the liver cells (hepatocytes) is one of the first pathological changes (fatty liver) that occurs in response to alcohol consumption. Duri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855439/ https://www.ncbi.nlm.nih.gov/pubmed/36671721 http://dx.doi.org/10.3390/biology12010028 |
Sumario: | SIMPLE SUMMARY: The liver sustains the greatest damage from heavy alcohol consumption because alcohol is primarily detoxified in the liver. Accumulation of fat in the liver cells (hepatocytes) is one of the first pathological changes (fatty liver) that occurs in response to alcohol consumption. During continuous use/abuse of alcohol, fatty liver progresses to more severe forms of a liver disease such as fibrosis, cirrhosis, and cancer. In this study, we used several high-throughput biochemical assays that were combined during analysis (Multiomics) to determine molecular changes induced by alcohol during the development of fatty liver in an alcohol fed animal model. We found that alcohol administration increased several fatty acid species that are precursors to triglycerides (fat). Notably, while there was an increase in glucuronidation (biochemical modification of compounds for removal from body) of toxic metabolites, glucuronidation of cholesterols were selectively decreased after alcohol administration. These findings suggest that alcohol administration promotes precursors essential for fat formation and simultaneously decreases the removal of cholesterol to disrupt hepatic metabolic homeostasis. Our findings provide deeper insights into metabolic pathways altered by alcohol and forms the basis for further investigations that can reveal potential druggable targets to treat alcohol associated fatty liver disease. ABSTRACT: Using a multiplatform and multiomics approach, we identified metabolites, lipids, proteins, and metabolic pathways that were altered in the liver after chronic ethanol administration. A functional enrichment analysis of the multiomics dataset revealed that rats treated with ethanol experienced an increase in hepatic fatty acyl content, which is consistent with an initial development of steatosis. The nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography–mass spectrometry (LC-MS) metabolomics data revealed that the chronic ethanol exposure selectively modified toxic substances such as an increase in glucuronidation tyramine and benzoyl; and a depletion in cholesterol-conjugated glucuronides. Similarly, the lipidomics results revealed that ethanol decreased diacylglycerol, and increased triacylglycerol, sterol, and cholesterol biosynthesis. An integrated metabolomics and lipidomics pathway analysis showed that the accumulation of hepatic lipids occurred by ethanol modulation of the upstream lipid regulatory pathways, specifically glycolysis and glucuronides pathways. A proteomics analysis of lipid droplets isolated from control EtOH-fed rats and a subsequent functional enrichment analysis revealed that the proteomics data corroborated the metabolomic and lipidomic findings that chronic ethanol administration altered the glucuronidation pathway. |
---|