Cargando…

Optimized Design and Preparation of Ag Nanoparticle Multilayer SERS Substrates with Excellent Sensing Performance

Nanoparticle multilayer substrates usually exhibit excellent SERS activity due to multi-dimensional plasmon coupling. However, simply increasing the layers will lead to several problems, such as complex manufacturing procedures, reduced uniformity and poor reproducibility. In this paper, the local e...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Ping, Yang, Feng, Hu, Xiaoling, Xu, Yi, Wan, Shu, Chen, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855442/
https://www.ncbi.nlm.nih.gov/pubmed/36671886
http://dx.doi.org/10.3390/bios13010052
Descripción
Sumario:Nanoparticle multilayer substrates usually exhibit excellent SERS activity due to multi-dimensional plasmon coupling. However, simply increasing the layers will lead to several problems, such as complex manufacturing procedures, reduced uniformity and poor reproducibility. In this paper, the local electric field (LEF) characteristics of a Ag nanoparticle (AgNP) multilayer were systematically studied through finite element simulations. We found that, on the glass support, the LEF intensity improved with the increase in the layers of AgNPs. However, the maximum LEF could be obtained with only two layers of AgNPs on the Au film support, and it was much stronger than the optimal value of the former. To verify the simulation results, we have successfully prepared one to four layers of AgNPs on both supports with a liquid–liquid interface self-assembly method, and carried out a series of SERS measurements. The experimental results were in good agreement with the simulations. Finally, the optimized SERS substrate, the 2-AgNP@Au film, showed an ultra-high SERS sensitivity, along with an excellent signal uniformity, which had a detection ability of 1 × 10(−15) M for the Rhodamine 6G (R6G) and a relative standard deviation (RSD) of 11% for the signal intensity. Our study provides important theoretical guidance and a technical basis for the optimized design and application of high-performance SERS substrates.