Cargando…
Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products
SIMPLE SUMMARY: Bioconversion of chitinous waste to chito-oligosaccharides using chitinase is an attractive strategy for traditional waste management. Chito-oligosaccharides have a broad range of applications due to their water solubility and possess various biological properties. The different sour...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855443/ https://www.ncbi.nlm.nih.gov/pubmed/36671779 http://dx.doi.org/10.3390/biology12010087 |
Sumario: | SIMPLE SUMMARY: Bioconversion of chitinous waste to chito-oligosaccharides using chitinase is an attractive strategy for traditional waste management. Chito-oligosaccharides have a broad range of applications due to their water solubility and possess various biological properties. The different sources of chitinase provide different yields and physicochemical properties, e.g., the degree of polymerization of chito-oligosaccharides. This review discusses the potential of chitinase in chito-oligosaccharide production with a focus on the chitinase sources, chemo-enzymatic production of chito-oligosaccharides and their derivatives, applications of chito-oligosaccharides, and the route to industrialization, based on the academic studies published within the most recent decade. ABSTRACT: Chito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation. This review provides updated information about research on new chitinase derived from various sources, including bacteria, fungi, plants, and animals, employed for the efficient production of COSs. The route to industrialization of these chitinases and COS products is also described. |
---|