Cargando…
MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein–Protein Docking Conformations
Protein–protein interactions play a ubiquitous role in biological function. Knowledge of the three-dimensional (3D) structures of the complexes they form is essential for understanding the structural basis of those interactions and how they orchestrate key cellular processes. Computational docking h...
Autores principales: | Jung, Yong, Geng, Cunliang, Bonvin, Alexandre M. J. J., Xue, Li C., Honavar, Vasant G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855734/ https://www.ncbi.nlm.nih.gov/pubmed/36671507 http://dx.doi.org/10.3390/biom13010121 |
Ejemplares similares
-
iScore: a novel graph kernel-based function for scoring protein–protein docking models
por: Geng, Cunliang, et al.
Publicado: (2020) -
iScore: An MPI supported software for ranking protein–protein docking models based on a random walk graph kernel and support vector machines
por: Renaud, Nicolas, et al.
Publicado: (2020) -
Scoring docking conformations using predicted protein interfaces
por: Esmaielbeiki, Reyhaneh, et al.
Publicado: (2014) -
Template-based protein–protein docking exploiting pairwise interfacial residue restraints
por: Xue, Li C, et al.
Publicado: (2017) -
dMM-PBSA: A New HADDOCK Scoring Function for Protein-Peptide Docking
por: Spiliotopoulos, Dimitrios, et al.
Publicado: (2016)