Cargando…

Engineering a SERS Sensing Nanoplatform with Self-Sterilization for Undifferentiated and Rapid Detection of Bacteria

The development of a convenient, sensitive, rapid and self-sterilizing biosensor for microbial detection is important for the prevention and control of foodborne diseases. Herein, we designed a surface-enhanced Raman scattering (SERS) sensing nanoplatform based on a capture–enrichment–enhancement st...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Jun, Zhu, Wei, Zhou, Ji, Zhao, Bai-Chuan, Pan, Yao-Yu, Ye, Yong, Shen, Ai-Guo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855742/
https://www.ncbi.nlm.nih.gov/pubmed/36671910
http://dx.doi.org/10.3390/bios13010075
Descripción
Sumario:The development of a convenient, sensitive, rapid and self-sterilizing biosensor for microbial detection is important for the prevention and control of foodborne diseases. Herein, we designed a surface-enhanced Raman scattering (SERS) sensing nanoplatform based on a capture–enrichment–enhancement strategy to detect bacteria. The gold−Azo@silver−cetyltrimethylammonium bromide (Au−Azo@Ag−CTAB) SERS nanotags were obtained by optimizing the synthesis process conditions. The results showed that the modification of CTAB enabled the nanotags to bind to different bacteria electrostatically. This SERS sensing nanoplatform was demonstrated to be fast (15 min), accurate and sensitive (limit of detection (LOD): 300 and 400 CFU/mL for E. coli and S. aureus, respectively). Of note, the excellent endogenous antibacterial activity of CTAB allowed the complete inactivation of bacteria after the assay process, thus effectively avoiding secondary contamination.