Cargando…
A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction
Point-of-care testing (POCT) techniques based on microfluidic devices enabled rapid and accurate tests on-site, playing an increasingly important role in public health. As the critical component of capillary-driven microfluidic devices for POCT use, the capillary microfluidic valve could schedule mu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855807/ https://www.ncbi.nlm.nih.gov/pubmed/36671861 http://dx.doi.org/10.3390/bios13010026 |
_version_ | 1784873466012368896 |
---|---|
author | Zhang, Yijun Li, Yuang Luan, Xiaofeng Li, Xin Jiang, Jiahong Fan, Yuanyuan Li, Mingxiao Huang, Chengjun Zhang, Lingqian Zhao, Yang |
author_facet | Zhang, Yijun Li, Yuang Luan, Xiaofeng Li, Xin Jiang, Jiahong Fan, Yuanyuan Li, Mingxiao Huang, Chengjun Zhang, Lingqian Zhao, Yang |
author_sort | Zhang, Yijun |
collection | PubMed |
description | Point-of-care testing (POCT) techniques based on microfluidic devices enabled rapid and accurate tests on-site, playing an increasingly important role in public health. As the critical component of capillary-driven microfluidic devices for POCT use, the capillary microfluidic valve could schedule multi-step biochemical operations, potentially being used for broader complex POCT tasks. However, owing to the reciprocal relationship between the capillary force and aperture in single-pore microchannels, it was challenging to achieve a high gating threshold and high operable liquid volume simultaneously with existing 2D capillary trigger valves. This paper proposed a 3D capillary-driven multi-microporous membrane-based trigger valve to address the issue. Taking advantage of the high gating threshold determined by micropores and the self-driven capillary channel, a 3D trigger valve composed of a microporous membrane for valving and a wedge-shaped capillary channel for flow pumping was implemented. Utilizing the capillary pinning effect of the multi-micropore membrane, the liquid above the membrane could be triggered by putting the drainage agent into the wedge-shaped capillary channel to wet the underside of the membrane, and it could also be cut off by taking away the agent. After theoretical analysis and performance characterizations, the 3D trigger valve performed a high gating threshold (above 1000 Pa) and high trigger efficiency with an operable liquid volume above 150 μL and a trigger-to-drain time below 6 s. Furthermore, the retention and trigger states of the valve could be switched for repeatable triggering for three cycles within 5 min. Finally, the microbead-based immunoreaction and live cell staining applications verified the valve’s ability to perform multi-step operations. The above results showed that the proposed 3D trigger valve could be expected to play a part in wide-ranging POCT application scenarios. |
format | Online Article Text |
id | pubmed-9855807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98558072023-01-21 A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction Zhang, Yijun Li, Yuang Luan, Xiaofeng Li, Xin Jiang, Jiahong Fan, Yuanyuan Li, Mingxiao Huang, Chengjun Zhang, Lingqian Zhao, Yang Biosensors (Basel) Article Point-of-care testing (POCT) techniques based on microfluidic devices enabled rapid and accurate tests on-site, playing an increasingly important role in public health. As the critical component of capillary-driven microfluidic devices for POCT use, the capillary microfluidic valve could schedule multi-step biochemical operations, potentially being used for broader complex POCT tasks. However, owing to the reciprocal relationship between the capillary force and aperture in single-pore microchannels, it was challenging to achieve a high gating threshold and high operable liquid volume simultaneously with existing 2D capillary trigger valves. This paper proposed a 3D capillary-driven multi-microporous membrane-based trigger valve to address the issue. Taking advantage of the high gating threshold determined by micropores and the self-driven capillary channel, a 3D trigger valve composed of a microporous membrane for valving and a wedge-shaped capillary channel for flow pumping was implemented. Utilizing the capillary pinning effect of the multi-micropore membrane, the liquid above the membrane could be triggered by putting the drainage agent into the wedge-shaped capillary channel to wet the underside of the membrane, and it could also be cut off by taking away the agent. After theoretical analysis and performance characterizations, the 3D trigger valve performed a high gating threshold (above 1000 Pa) and high trigger efficiency with an operable liquid volume above 150 μL and a trigger-to-drain time below 6 s. Furthermore, the retention and trigger states of the valve could be switched for repeatable triggering for three cycles within 5 min. Finally, the microbead-based immunoreaction and live cell staining applications verified the valve’s ability to perform multi-step operations. The above results showed that the proposed 3D trigger valve could be expected to play a part in wide-ranging POCT application scenarios. MDPI 2022-12-26 /pmc/articles/PMC9855807/ /pubmed/36671861 http://dx.doi.org/10.3390/bios13010026 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yijun Li, Yuang Luan, Xiaofeng Li, Xin Jiang, Jiahong Fan, Yuanyuan Li, Mingxiao Huang, Chengjun Zhang, Lingqian Zhao, Yang A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction |
title | A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction |
title_full | A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction |
title_fullStr | A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction |
title_full_unstemmed | A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction |
title_short | A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction |
title_sort | 3d capillary-driven multi-micropore membrane-based trigger valve for multi-step biochemical reaction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855807/ https://www.ncbi.nlm.nih.gov/pubmed/36671861 http://dx.doi.org/10.3390/bios13010026 |
work_keys_str_mv | AT zhangyijun a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT liyuang a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT luanxiaofeng a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT lixin a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT jiangjiahong a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT fanyuanyuan a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT limingxiao a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT huangchengjun a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT zhanglingqian a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT zhaoyang a3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT zhangyijun 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT liyuang 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT luanxiaofeng 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT lixin 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT jiangjiahong 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT fanyuanyuan 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT limingxiao 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT huangchengjun 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT zhanglingqian 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction AT zhaoyang 3dcapillarydrivenmultimicroporemembranebasedtriggervalveformultistepbiochemicalreaction |