Cargando…
Identification of Geometrical Features of Cell Surface Responsible for Cancer Aggressiveness: Machine Learning Analysis of Atomic Force Microscopy Images of Human Colorectal Epithelial Cells
It has been recently demonstrated that atomic force microscopy (AFM) allows for the rather precise identification of malignancy in bladder and cervical cells. Furthermore, an example of human colorectal epithelial cells imaged in AFM Ringing mode has demonstrated the ability to distinguish cells wit...
Autores principales: | Petrov, Mikhail, Sokolov, Igor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855899/ https://www.ncbi.nlm.nih.gov/pubmed/36672699 http://dx.doi.org/10.3390/biomedicines11010191 |
Ejemplares similares
-
Machine Learning Allows for Distinguishing Precancerous and Cancerous Human Epithelial Cervical Cells Using High-Resolution AFM Imaging of Adhesion Maps
por: Petrov, Mikhail, et al.
Publicado: (2023) -
Atomic Force Microscopy Study of Nano-Physiological Response of Ladybird Beetles to Photostimuli
por: Guz, Natalia V., et al.
Publicado: (2010) -
Nanoscale compositional mapping of cells, tissues, and polymers with ringing mode of atomic force microscopy
por: Dokukin, M. E., et al.
Publicado: (2017) -
Machine learning of atomic force microscopy images of organic solar cells
por: Kobayashi, Yasuhito, et al.
Publicado: (2023) -
Elucidating the Geometric Substitution of Petroporphyrins
by Spectroscopic Analysis and Atomic Force Microscopy Molecular Imaging
por: Zhang, Yunlong, et al.
Publicado: (2019)