Cargando…
Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury
Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. No...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855942/ https://www.ncbi.nlm.nih.gov/pubmed/36671984 http://dx.doi.org/10.3390/brainsci13010002 |
_version_ | 1784873499474526208 |
---|---|
author | Ou, Ze Guo, Yu Gharibani, Payam Slepyan, Ariel Routkevitch, Denis Bezerianos, Anastasios Geocadin, Romergryko G. Thakor, Nitish V. |
author_facet | Ou, Ze Guo, Yu Gharibani, Payam Slepyan, Ariel Routkevitch, Denis Bezerianos, Anastasios Geocadin, Romergryko G. Thakor, Nitish V. |
author_sort | Ou, Ze |
collection | PubMed |
description | Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. Nonetheless, their potential in the acute recovery phase, where the injury is reversible, has not been tested. We hypothesize that time-frequency (TF) analysis of HFOs can determine arousal recovery in the acute recovery phase. To test our hypothesis, eleven adult male Wistar rats were subjected to asphyxial CA (five with 3-min mild and six with 7-min moderate to severe CA) and SSEPs were recorded for 60 min post-resuscitation. Arousal level was quantified by the neurological deficit scale (NDS) at 4 h. Our results demonstrated that continuous wavelet transform (CWT) of SSEPs localizes HFOs in the TF domain under baseline conditions. The energy dispersed immediately after injury and gradually recovered. We proposed a novel TF-domain measure of HFO: the total power in the normal time-frequency space (NTFS) of HFO. We found that the NTFS power significantly separated the favorable and unfavorable outcome groups. We conclude that the NTFS power of HFOs provides earlier and objective determination of arousal recovery after CA. |
format | Online Article Text |
id | pubmed-9855942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98559422023-01-21 Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury Ou, Ze Guo, Yu Gharibani, Payam Slepyan, Ariel Routkevitch, Denis Bezerianos, Anastasios Geocadin, Romergryko G. Thakor, Nitish V. Brain Sci Article Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. Nonetheless, their potential in the acute recovery phase, where the injury is reversible, has not been tested. We hypothesize that time-frequency (TF) analysis of HFOs can determine arousal recovery in the acute recovery phase. To test our hypothesis, eleven adult male Wistar rats were subjected to asphyxial CA (five with 3-min mild and six with 7-min moderate to severe CA) and SSEPs were recorded for 60 min post-resuscitation. Arousal level was quantified by the neurological deficit scale (NDS) at 4 h. Our results demonstrated that continuous wavelet transform (CWT) of SSEPs localizes HFOs in the TF domain under baseline conditions. The energy dispersed immediately after injury and gradually recovered. We proposed a novel TF-domain measure of HFO: the total power in the normal time-frequency space (NTFS) of HFO. We found that the NTFS power significantly separated the favorable and unfavorable outcome groups. We conclude that the NTFS power of HFOs provides earlier and objective determination of arousal recovery after CA. MDPI 2022-12-20 /pmc/articles/PMC9855942/ /pubmed/36671984 http://dx.doi.org/10.3390/brainsci13010002 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ou, Ze Guo, Yu Gharibani, Payam Slepyan, Ariel Routkevitch, Denis Bezerianos, Anastasios Geocadin, Romergryko G. Thakor, Nitish V. Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury |
title | Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury |
title_full | Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury |
title_fullStr | Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury |
title_full_unstemmed | Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury |
title_short | Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury |
title_sort | time-frequency analysis of somatosensory evoked high-frequency (600 hz) oscillations as an early indicator of arousal recovery after hypoxic-ischemic brain injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855942/ https://www.ncbi.nlm.nih.gov/pubmed/36671984 http://dx.doi.org/10.3390/brainsci13010002 |
work_keys_str_mv | AT ouze timefrequencyanalysisofsomatosensoryevokedhighfrequency600hzoscillationsasanearlyindicatorofarousalrecoveryafterhypoxicischemicbraininjury AT guoyu timefrequencyanalysisofsomatosensoryevokedhighfrequency600hzoscillationsasanearlyindicatorofarousalrecoveryafterhypoxicischemicbraininjury AT gharibanipayam timefrequencyanalysisofsomatosensoryevokedhighfrequency600hzoscillationsasanearlyindicatorofarousalrecoveryafterhypoxicischemicbraininjury AT slepyanariel timefrequencyanalysisofsomatosensoryevokedhighfrequency600hzoscillationsasanearlyindicatorofarousalrecoveryafterhypoxicischemicbraininjury AT routkevitchdenis timefrequencyanalysisofsomatosensoryevokedhighfrequency600hzoscillationsasanearlyindicatorofarousalrecoveryafterhypoxicischemicbraininjury AT bezerianosanastasios timefrequencyanalysisofsomatosensoryevokedhighfrequency600hzoscillationsasanearlyindicatorofarousalrecoveryafterhypoxicischemicbraininjury AT geocadinromergrykog timefrequencyanalysisofsomatosensoryevokedhighfrequency600hzoscillationsasanearlyindicatorofarousalrecoveryafterhypoxicischemicbraininjury AT thakornitishv timefrequencyanalysisofsomatosensoryevokedhighfrequency600hzoscillationsasanearlyindicatorofarousalrecoveryafterhypoxicischemicbraininjury |