Cargando…
GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity
Drug-target binding affinity (DTA) prediction is an essential step in drug discovery. Drug-target protein binding occurs at specific regions between the protein and drug, rather than the entire protein and drug. However, existing deep-learning DTA prediction methods do not consider the interactions...
Autores principales: | Bae, Haelee, Nam, Hojung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855982/ https://www.ncbi.nlm.nih.gov/pubmed/36672575 http://dx.doi.org/10.3390/biomedicines11010067 |
Ejemplares similares
-
SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network
por: Zhang, Shugang, et al.
Publicado: (2021) -
ArkDTA: attention regularization guided by non-covalent interactions for explainable drug–target binding affinity prediction
por: Gim, Mogan, et al.
Publicado: (2023) -
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022) -
CSatDTA: Prediction of Drug–Target Binding Affinity Using Convolution Model with Self-Attention
por: Ghimire, Ashutosh, et al.
Publicado: (2022) -
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018)