Cargando…
Axial Attention Convolutional Neural Network for Brain Tumor Segmentation with Multi-Modality MRI Scans
Accurately identifying tumors from MRI scans is of the utmost importance for clinical diagnostics and when making plans regarding brain tumor treatment. However, manual segmentation is a challenging and time-consuming process in practice and exhibits a high degree of variability between doctors. The...
Autores principales: | Tian, Weiwei, Li, Dengwang, Lv, Mengyu, Huang, Pu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856007/ https://www.ncbi.nlm.nih.gov/pubmed/36671994 http://dx.doi.org/10.3390/brainsci13010012 |
Ejemplares similares
-
Multi-Modal Segmentation of 3D Brain Scans Using Neural Networks
por: Zopes, Jonathan, et al.
Publicado: (2021) -
Instance segmentation convolutional neural network based on multi-scale attention mechanism
por: Gaihua, Wang, et al.
Publicado: (2022) -
Single-modal and multi-modal false arrhythmia alarm reduction using attention-based convolutional and recurrent neural networks
por: Mousavi, Sajad, et al.
Publicado: (2020) -
Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images
por: Ranjbarzadeh, Ramin, et al.
Publicado: (2021) -
Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans
por: Usman, Muhammad, et al.
Publicado: (2022)