Cargando…
Artificial Intelligence Assisted Computational Tomographic Detection of Lung Nodules for Prognostic Cancer Examination: A Large-Scale Clinical Trial
Low-dose computed tomography (LDCT) has emerged as a standard method for detecting early-stage lung cancer. However, the tedious computer tomography (CT) slide reading, patient-by-patient check, and lack of standard criteria to determine the vague but possible nodule leads to variable outcomes of CT...
Autores principales: | Chao, Heng-Sheng, Tsai, Chiao-Yun, Chou, Chung-Wei, Shiao, Tsu-Hui, Huang, Hsu-Chih, Chen, Kun-Chieh, Tsai, Hao-Hung, Lin, Chin-Yu, Chen, Yuh-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856020/ https://www.ncbi.nlm.nih.gov/pubmed/36672655 http://dx.doi.org/10.3390/biomedicines11010147 |
Ejemplares similares
-
Artificial Intelligence for Early Detection of Chest Nodules in X-ray Images
por: Chiu, Hwa-Yen, et al.
Publicado: (2022) -
Artificial Intelligence–Assisted Electrocardiography for Early Diagnosis of Thyrotoxic Periodic Paralysis
por: Lin, Chin, et al.
Publicado: (2021) -
Deep Learning-based Artificial Intelligence Improves Accuracy of Error-prone Lung Nodules
por: Lan, Chou-Chin, et al.
Publicado: (2022) -
Intraprocedure Artificial Intelligence Alert System for Colonoscopy Examination
por: Hsu, Chen-Ming, et al.
Publicado: (2023) -
Deep learning course development and evaluation of artificial intelligence in vocational senior high schools
por: Tsai, Chih-Cheng, et al.
Publicado: (2022)