Cargando…

Age- and Sex-Dependent Behavioral and Neurochemical Alterations in hLRRK2-G2019S BAC Mice

The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with late-onset Parkinson’s disease (PD). Although PD affects men and women differently, longitudinal studies examining sex- and age-dependent alterations in mice carrying the G2019S mutation are limited. We examined...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Ning, Skiteva, Olga, Chergui, Karima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856037/
https://www.ncbi.nlm.nih.gov/pubmed/36671436
http://dx.doi.org/10.3390/biom13010051
Descripción
Sumario:The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with late-onset Parkinson’s disease (PD). Although PD affects men and women differently, longitudinal studies examining sex- and age-dependent alterations in mice carrying the G2019S mutation are limited. We examined if behavioral and neurochemical dysfunctions, as well as neurodegeneration, occur in male and female BAC LRRK2-hG2019S (G2019S) mice, compared to their age-matched wild type littermates, at four age ranges. In the open field test, hyperlocomotion was observed in 10–12 month old male and 2–4.5 months old female G2019S mice. In the pole test, motor coordination was impaired in male G2019S mice from 15 months of age and in 20–21 months old female G2019S mice. In the striatum of G2019S male and female mice, the amounts of tyrosine hydroxylase (TH), measured with Western blotting, were unaltered. However, we found a decreased expression of the dopamine transporter in 20–21 month old male G2019S mice. The number of TH-positive neurons in the substantia nigra compacta was unaltered in 20–21 month old male and female G2019S mice. These results identify sex- and age-dependent differences in the occurrence of motor and neurochemical deficits in BAC LRRK2-hG2019S mice, and no degeneration of DA neurons.