Cargando…
The Development of an Intelligent Agent to Detect and Non-Invasively Characterize Lung Lesions on CT Scans: Ready for the “Real World”?
SIMPLE SUMMARY: An “intelligent agent” based on deep learning solutions is proposed to detect and non-invasively characterize lung lesions on computed tomography (CT) scans. Our retrospective study aimed to assess the effectiveness of Retina U-Net and the convolutional neural network for computer-ai...
Autores principales: | Sollini, Martina, Kirienko, Margarita, Gozzi, Noemi, Bruno, Alessandro, Torrisi, Chiara, Balzarini, Luca, Voulaz, Emanuele, Alloisio, Marco, Chiti, Arturo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856443/ https://www.ncbi.nlm.nih.gov/pubmed/36672306 http://dx.doi.org/10.3390/cancers15020357 |
Ejemplares similares
-
Convolutional Neural Networks Promising in Lung Cancer T-Parameter Assessment on Baseline FDG-PET/CT
por: Kirienko, Margarita, et al.
Publicado: (2018) -
Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer
por: Kirienko, Margarita, et al.
Publicado: (2021) -
Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics
por: Sollini, Martina, et al.
Publicado: (2019) -
Image Embeddings Extracted from CNNs Outperform Other Transfer Learning Approaches in Classification of Chest Radiographs
por: Gozzi, Noemi, et al.
Publicado: (2022) -
COVID-19 vaccination, implications for PET/CT image interpretation and future perspectives
por: Kirienko, Margarita, et al.
Publicado: (2022)