Cargando…
Exploiting the Cone of Influence for Improving the Performance of Wavelet Transform-Based Models for ERP/EEG Classification
Features extracted from the wavelet transform coefficient matrix are widely used in the design of machine learning models to classify event-related potential (ERP) and electroencephalography (EEG) signals in a wide range of brain activity research and clinical studies. This novel study is aimed at d...
Autores principales: | Chen, Xiaoqian, Gupta, Resh S., Gupta, Lalit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856575/ https://www.ncbi.nlm.nih.gov/pubmed/36672003 http://dx.doi.org/10.3390/brainsci13010021 |
Ejemplares similares
-
Multidomain Convolution Neural Network Models for Improved Event-Related Potential Classification
por: Chen, Xiaoqian, et al.
Publicado: (2023) -
Studentized continuous wavelet transform (t-CWT) in the analysis of individual ERPs: real and simulated EEG data
por: Real, Ruben G. L., et al.
Publicado: (2014) -
Multimodal Object Classification Models Inspired by Multisensory Integration in the Brain
por: Amerineni, Rajesh, et al.
Publicado: (2019) -
EEG Analysis with Wavelet Transform under Music Perception Stimulation
por: Xue, Jing
Publicado: (2021) -
Application of Wavelet Transform for PDZ Domain Classification
por: Daqrouq, Khaled, et al.
Publicado: (2015)