Cargando…
Prognostication in Advanced Cancer by Combining Actigraphy-Derived Rest-Activity and Sleep Parameters with Routine Clinical Data: An Exploratory Machine Learning Study
SIMPLE SUMMARY: Survival prediction is an important aspect of oncology and palliative care. Measures of night-time relative to daytime activity, derived from a motion sensor, have shown promise in patients receiving chemotherapy. Measuring rest-activity and sleep may, therefore, result in improved p...
Autores principales: | Patel, Shuchita Dhwiren, Davies, Andrew, Laing, Emma, Wu, Huihai, Mendis, Jeewaka, Dijk, Derk-Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856985/ https://www.ncbi.nlm.nih.gov/pubmed/36672452 http://dx.doi.org/10.3390/cancers15020503 |
Ejemplares similares
-
Personalized Sleep Parameters Estimation from Actigraphy: A Machine Learning Approach
por: Khademi, Aria, et al.
Publicado: (2019) -
Machine‐learning‐derived sleep–wake staging from around‐the‐ear electroencephalogram outperforms manual scoring and actigraphy
por: Mikkelsen, Kaare B., et al.
Publicado: (2018) -
Effects of the selective orexin-2 receptor antagonist JNJ-48816274 on sleep initiated in the circadian wake maintenance zone: a randomised trial
por: Revell, Victoria L., et al.
Publicado: (2021) -
Misperception of sleep in bipolar disorder: an exploratory study using questionnaire versus actigraphy
por: Ihler, Henrik Myhre, et al.
Publicado: (2020) -
Identifying and validating blood mRNA biomarkers for acute and chronic insufficient sleep in humans: a machine learning approach
por: Laing, Emma E, et al.
Publicado: (2018)