Cargando…

Dysfunctional Lipid Metabolism—The Basis for How Genetic Abnormalities Express the Phenotype of Aggressive Prostate Cancer

SIMPLE SUMMARY: Advanced prostate cancer has a higher mortality rate at diagnosis compared to localised prostate cancer. As such, it is critical to understand the mechanisms of development, and potential pathways that may drive research into novel treatments. We aim to review how lipid metabolism re...

Descripción completa

Detalles Bibliográficos
Autores principales: Alberto, Matthew, Yim, Arthur, Lawrentschuk, Nathan, Bolton, Damien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857232/
https://www.ncbi.nlm.nih.gov/pubmed/36672291
http://dx.doi.org/10.3390/cancers15020341
Descripción
Sumario:SIMPLE SUMMARY: Advanced prostate cancer has a higher mortality rate at diagnosis compared to localised prostate cancer. As such, it is critical to understand the mechanisms of development, and potential pathways that may drive research into novel treatments. We aim to review how lipid metabolism relates to advanced prostate cancer. ABSTRACT: Prostate cancer is the second most frequent cancer in men, with increasing prevalence due to an ageing population. Advanced prostate cancer is diagnosed in up to 20% of patients, and, therefore, it is important to understand evolving mechanisms of progression. Significant morbidity and mortality can occur in advanced prostate cancer where treatment options are intrinsically related to lipid metabolism. Dysfunctional lipid metabolism has long been known to have a relationship to prostate cancer development; however, only recently have studies attempted to elucidate the exact mechanism relating genetic abnormalities and lipid metabolic pathways. Contemporary research has established the pathways leading to prostate cancer development, including dysregulated lipid metabolism-associated de novo lipogenesis through steroid hormone biogenesis and β-oxidation of fatty acids. These pathways, in relation to treatment, have formed potential novel targets for management of advanced prostate cancer via androgen deprivation. We review basic lipid metabolism pathways and their relation to hypogonadism, and further explore prostate cancer development with a cellular emphasis.