Cargando…

Exploration of Fuzheng Yugan Mixture on COVID-19 based on network pharmacology and molecular docking

After the World Health Organization declared coronavirus disease 2019 (COVID-19), as a global pandemic, global health workers have been facing an unprecedented and severe challenge. Currently, a mixturetion to inhibit the exacerbation of pulmonary inflammation caused by COVID-19, Fuzheng Yugan Mixtu...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Xinyu, Zhou, Jie, Yu, Zhongming, Gu, Xueya, Lu, Ying, Ruan, Yanmin, Wang, Tianyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857359/
https://www.ncbi.nlm.nih.gov/pubmed/36701702
http://dx.doi.org/10.1097/MD.0000000000032693
Descripción
Sumario:After the World Health Organization declared coronavirus disease 2019 (COVID-19), as a global pandemic, global health workers have been facing an unprecedented and severe challenge. Currently, a mixturetion to inhibit the exacerbation of pulmonary inflammation caused by COVID-19, Fuzheng Yugan Mixture (FZYGM), has been approved for medical institution mixturetion notification. However, the mechanism of FZYGM remains poorly defined. This study aimed to elucidate the molecular and related physiological pathways of FZYGM as a potential therapeutic agent for COVID-19. Active molecules of FZYGM were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), while potential target genes of COVID-19 were identified by DrugBank and GeneCards. Compound-target networks and protein-protein interactions (PPI) were established by Cytoscape_v3.8.2 and String databases, respectively. The gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Finally, a more in-depth study was performed using molecular docking. Our study identified 7 active compounds and 3 corresponding core targets. The main potentially acting signaling pathways include the interleukin (IL)-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, Toll-like receptor signaling pathway, Th17 cell differentiation, and coronavirus disease-COVID-19. This study shows that FZYGM can exhibit anti-COVID-19 effects through multiple targets and pathways. Therefore, FZYGM can be considered a drug candidate for the treatment of COVID-19, and it provides good theoretical support for subsequent experiments and clinical applications of COVID-19.