Cargando…
Partial Autocorrelation Diagnostics for Count Time Series
In a time series context, the study of the partial autocorrelation function (PACF) is helpful for model identification. Especially in the case of autoregressive (AR) models, it is widely used for order selection. During the last decades, the use of AR-type count processes, i.e., which also fulfil th...
Autores principales: | Weiß, Christian H., Aleksandrov, Boris, Faymonville, Maxime, Jentsch, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857374/ https://www.ncbi.nlm.nih.gov/pubmed/36673246 http://dx.doi.org/10.3390/e25010105 |
Ejemplares similares
-
Significance testing of rank cross-correlations between autocorrelated time series with short-range dependence
por: Lun, David, et al.
Publicado: (2022) -
Autocorrelation in category judgement
por: Laming, Donald
Publicado: (2023) -
Bayesian modeling of the covariance structure for irregular longitudinal data using the partial autocorrelation function
por: Su, Li, et al.
Publicado: (2015) -
Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series
por: Olson, Roman, et al.
Publicado: (2019) -
Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach
por: Mohebbi, Mohammadreza, et al.
Publicado: (2014)