Cargando…
Estimation of Large-Dimensional Covariance Matrices via Second-Order Stein-Type Regularization
This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators....
Autores principales: | Zhang, Bin, Huang, Hengzhen, Chen, Jianbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857414/ https://www.ncbi.nlm.nih.gov/pubmed/36673194 http://dx.doi.org/10.3390/e25010053 |
Ejemplares similares
-
Large covariance and autocovariance matrices
por: Bose, Arup, et al.
Publicado: (2018) -
Shrinkage estimators of large covariance matrices with Toeplitz targets in array signal processing
por: Zhang, Bin, et al.
Publicado: (2022) -
Shrinkage estimation for mean and covariance matrices
por: Tsukuma, Hisayuki, et al.
Publicado: (2020) -
Robust-stein estimator for overcoming outliers and multicollinearity
por: Lukman, Adewale F., et al.
Publicado: (2023) -
Edith Stein : nuestra hermana
por: Ochayta Piñeiro, Félix, 1934-
Publicado: (1998)