Cargando…
Risk of Myelopathy Following Second Local Treatment after Initial Irradiation of Spine Metastasis
Metastatic lesions of the spine occur in up to 40% of cancer patients and are a frequent source of pain and neurologic deficit due to cord compression. Palliative radiotherapy is the main first-intent local treatment in the form of single-fraction radiotherapy or fractionated courses. Reirradiation...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857541/ https://www.ncbi.nlm.nih.gov/pubmed/36672985 http://dx.doi.org/10.3390/diagnostics13020175 |
Sumario: | Metastatic lesions of the spine occur in up to 40% of cancer patients and are a frequent source of pain and neurologic deficit due to cord compression. Palliative radiotherapy is the main first-intent local treatment in the form of single-fraction radiotherapy or fractionated courses. Reirradiation is a viable option for inoperable patients where spinal decompression is needed but with an increased risk of radiation-induced myelopathy (RM) and subsequent neurologic damage. This review summarizes reported data on local treatment options after initial irradiation in patients with relapsed spine metastasis and key dosimetric correlations between the risk of spinal cord injury and reirradiation technique, total dose, and time between treatments. The Linear Quadratic (LQ) model was used to convert all the published doses into biologically effective doses and normalize them to EQD2. For 3D radiotherapy, authors used cumulative doses from 55.2 Gy2/2 to 65.5 Gy2/2 EQD2 with no cases of RM mentioned. We found little evidence of RM after SBRT in the papers that met our criteria of inclusion, usually at the median reported dose to critical neural tissue around 93.5 Gy2/2. There is a lack of consistency in reporting the spinal cord dose, which leads to difficulty in pooling data. |
---|