Cargando…
Mining Mobile Network Fraudsters with Augmented Graph Neural Networks
With the rapid evolution of mobile communication networks, the number of subscribers and their communication practices is increasing dramatically worldwide. However, fraudsters are also sniffing out the benefits. Detecting fraudsters from the massive volume of call detail records (CDR) in mobile com...
Autores principales: | Hu, Xinxin, Chen, Haotian, Chen, Hongchang, Li, Xing, Zhang, Junjie, Liu, Shuxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857549/ https://www.ncbi.nlm.nih.gov/pubmed/36673291 http://dx.doi.org/10.3390/e25010150 |
Ejemplares similares
-
Pretending to Be Better Than They Are? Emotional Manipulation in Imprisoned Fraudsters
por: Wang, Qianglong, et al.
Publicado: (2021) -
Profiling the fraudster
:
removing the mask to prevent and detect fraud
por: Padgett, Simon
Publicado: (2015) -
Web creator Tim Berners-Lee duped by online fraudsters
Publicado: (2009) -
Faces of Fraud: Cases and Lessons from a Life Fighting Fraudsters
por: Biegelman, Martin
Publicado: (2013) -
Coal Wall and Roof Segmentation in the Coal Mine Working
Face Based on Dynamic Graph Convolution Neural Networks
por: Xing, Zhizhong, et al.
Publicado: (2021)