Cargando…
Multi-Objective Evolutionary Architecture Search for Parameterized Quantum Circuits
Recent work on hybrid quantum-classical machine learning systems has demonstrated success in utilizing parameterized quantum circuits (PQCs) to solve the challenging reinforcement learning (RL) tasks, with provable learning advantages over classical systems, e.g., deep neural networks. While existin...
Autores principales: | Ding, Li, Spector, Lee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857551/ https://www.ncbi.nlm.nih.gov/pubmed/36673234 http://dx.doi.org/10.3390/e25010093 |
Ejemplares similares
-
Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
por: Chang, Su Yeon, et al.
Publicado: (2021) -
Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
por: Chang, Su Yeon
Publicado: (2021) -
Structural Invariants for the Verification of Systems with Parameterized Architectures
por: Bozga, Marius, et al.
Publicado: (2020) -
Parameterizing sequence alignment with an explicit evolutionary model
por: Rivas, Elena, et al.
Publicado: (2015) -
Machine learning and the quest for objectivity in climate model parameterization
por: Jebeile, Julie, et al.
Publicado: (2023)