Cargando…
Could Collected Chemical Parameters Be Utilized to Build Soft Sensors Capable of Predicting the Provenance, Vintages, and Price Points of New Zealand Pinot Noir Wines Simultaneously?
Soft sensors work as predictive frameworks encapsulating a set of easy-to-collect input data and a machine learning method (ML) to predict highly related variables that are difficult to measure. The machine learning method could provide a prediction of complex unknown relations between the input dat...
Autores principales: | An, Jingxian, Deed, Rebecca C., Kilmartin, Paul A., Yu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857561/ https://www.ncbi.nlm.nih.gov/pubmed/36673415 http://dx.doi.org/10.3390/foods12020323 |
Ejemplares similares
-
The importance of outlier rejection and significant explanatory variable selection for pinot noir wine soft sensor development
por: An, Jingxian, et al.
Publicado: (2023) -
Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data
por: Fuentes, Sigfredo, et al.
Publicado: (2020) -
Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry
por: Steenwerth, Kerri L., et al.
Publicado: (2021) -
Pinot blanc and Pinot gris arose as independent somatic mutations of Pinot noir
por: Vezzulli, Silvia, et al.
Publicado: (2012) -
Effects of Microvibrations and Their Damping on the Evolution of Pinot Noir Wine during Bottle Storage
por: Poggesi, Simone, et al.
Publicado: (2022)