Cargando…
Development and Validation of a Machine Learning Model to Estimate Risk of Adverse Outcomes Within 30 Days of Opioid Dispensation
IMPORTANCE: Machine learning approaches can assist opioid stewardship by identifying high-risk opioid prescribing for potential interventions. OBJECTIVE: To develop a machine learning model for deployment that can estimate the risk of adverse outcomes within 30 days of an opioid dispensation as a po...
Autores principales: | Sharma, Vishal, Kulkarni, Vinaykumar, Jess, Ed, Gilani, Fizza, Eurich, Dean, Simpson, Scot H., Voaklander, Don, Semenchuk, Michael, London, Connor, Samanani, Salim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857580/ https://www.ncbi.nlm.nih.gov/pubmed/36574245 http://dx.doi.org/10.1001/jamanetworkopen.2022.48559 |
Ejemplares similares
-
Safe opioid prescribing: a prognostic machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada
por: Sharma, Vishal, et al.
Publicado: (2021) -
Characterisation of concurrent use of prescription opioids and benzodiazepine/Z-drugs in Alberta, Canada: a population-based study
por: Sharma, Vishal, et al.
Publicado: (2019) -
Predicting falls-related admissions in older adults in Alberta, Canada: a machine-learning falls prevention tool developed using population administrative health data
por: Sharma, Vishal, et al.
Publicado: (2023) -
Concurrent use of opioids and benzodiazepines/Z-drugs in Alberta, Canada and the risk of hospitalisation and death: a case cross-over study
por: Sharma, Vishal, et al.
Publicado: (2020) -
Appropriateness of COVID-19 public health guidelines for an Alberta First Nations community
por: Soprovich, Allison L., et al.
Publicado: (2022)